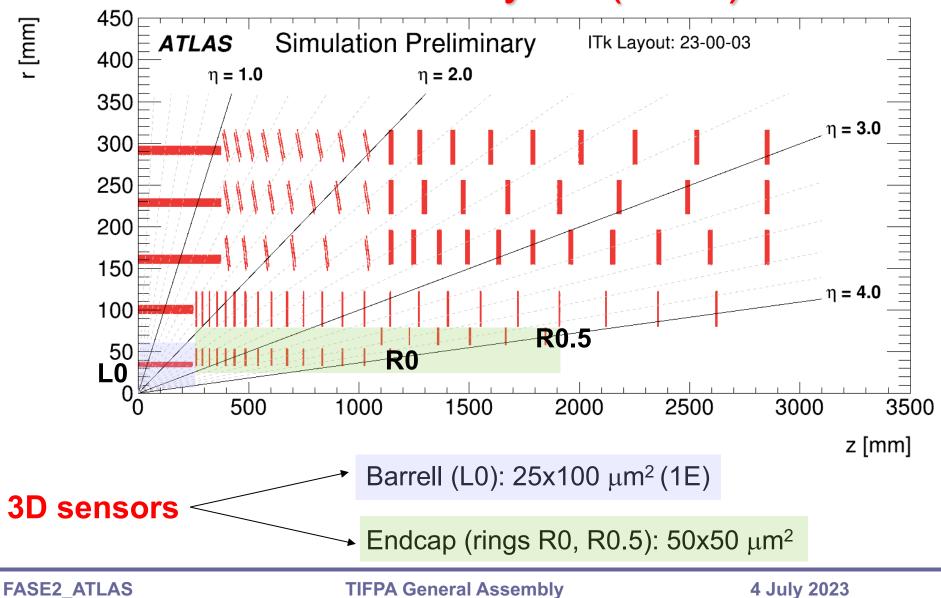


Trento Institute for Fundamental Physics and Applications INFN

CSN1 Project FASE2_ATLAS


Gian-Franco Dalla Betta DMS Sultan

FASE2_ATLAS

TIFPA General Assembly

ATLAS ITk Layout (Pixel)

, [mm]

3D sensor production scheme

• Production of 3D sensors for the Barrel (25 x 100 μ m² - 1E)

 \rightarrow CNM on 4-inch wafers (~500 sensors)

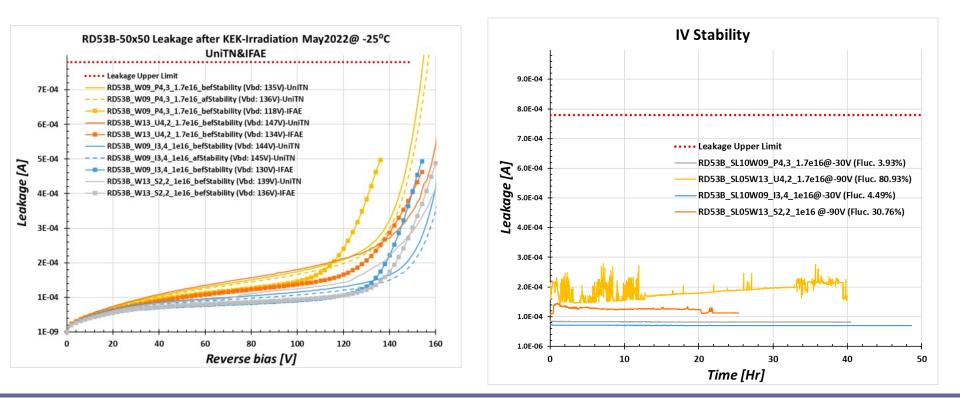
- Production of 3D sensors for the Endcap (50 x 50 μ m²) \rightarrow FBK and SINTEF on 6-inch wafers (50% each = 800 sensors)
- Status at all vendors:

→ FBK: successfully completed and delivered pre-production, started production

→ SINTEF: successfully completed and delivered pre-production

 \rightarrow CNM: failed pre-production

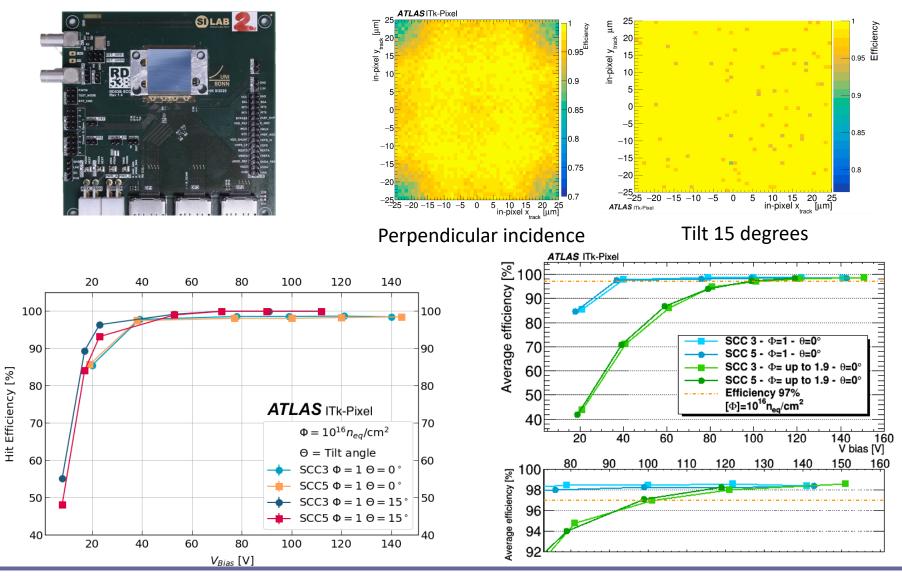
• Back-up solution for 25 x 100 μ m² pixels:


→ FBK qualified through a CMS batch (CROC), successfully completed and delivered pre-production

FASE 2_ATLAS: stato attività 2023

- Caratterizzazione elettrica e funzionale moduli 3D-ITkPix1 dal lotto di pre-produzione (pre- e post-irraggiamento)
 OK
- Allestimento setup e qualificazione sito per test sui moduli 3D In corso

QC Irradiated Sensors


- Caratterizzazione elettrica in camera climatica sensori e strutture di test dopo irraggiamento con protoni da 70 MeV @CYRIC (@ DII, UniTN)
- Risultati confrontabili con IFAE

FASE2_ATLAS

TIFPA General Assembly

First ITkPixV1 modules after irradiation

FASE2_ATLAS

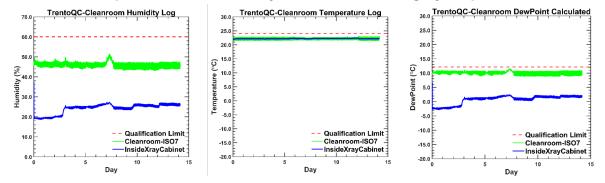
TIFPA General Assembly

QA/QC setup for ITk Triplet Module Qualifications

Cleanroom Requirements (1)

Shipping

Production Rate Planning

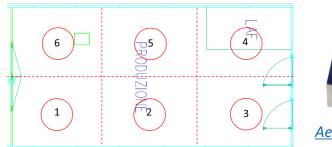

Storage of Bare Module, Module PCB and assembled module

TRUE

AT2-IP-QA-0045 v.1

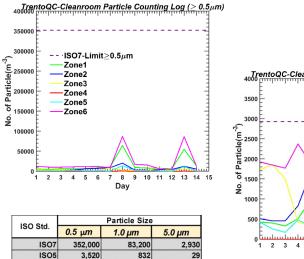
AT2-IP-QA-0038 v.1

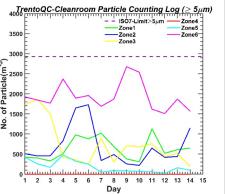
- INFN-Trento as a ITk Triplet module QC has to pass through a wide set of qualification steps.
- ISO Class 7 grade cleanroom is mandatory.
- All required ESD safe grade facilities are met already.
- INFN-Trento has gualified for the first three blocks of infrastructure gualifications: 1, 2 & 3.
- Stable temperature and humidity have been thoroughly inspected for a continuous 14-days.



Dry-Cabinet

FASE2 ATLAS


TIFPA General Assembly

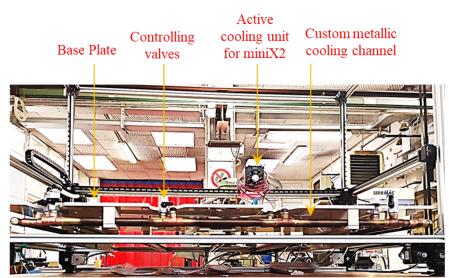

Cleanroom Requirements 2

• Aerotrak 9350-2 particle counter used to qualify particle conditions within the cleanroom. It meets ISO-7 standards.

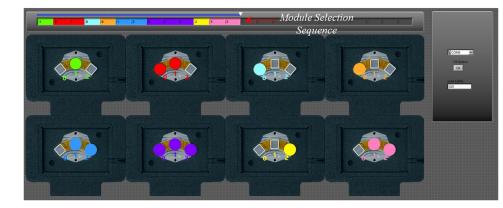
• Oil-free and ISO8573-1 (≤ Class 1) grade dry-air is required for QC activities. INFN-Trento meets these requirements.

Povo-0 Oil & Solid filters

- INFN-Trento also installed an additional dryer and vacuum injector.
 Compressed Air-Inlets
- The additional dryer ensures the dewpoint -70 °C.
- Vacuum injector ensures regulated pressure up to -900 mbar.

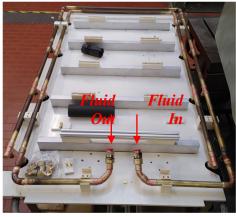

FASE2_ATLAS

TIFPA General Assembly


QC Test setup

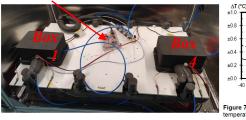
10 Testing set-up			AT2-IP-QA-0024 v.1
twiki overview	Cold testing setup	TRUE	AT2-IP-QA-0037 v.1
	Thermal cycling	TRUE	AT2-IP-QC-0019 v.1
	Interlocks	TRUE	AT2-IP-QA-0031 v.1
	DCS	TRUE	AT2-IP-QC-0017 v.1
	Testing Parallelization Setups	TRUE	AT2-IP-QC-0020 v.1
	Stability Test	TRUE	AT2-IP-QA-0054 v.1
	Source or x-ray test setup	TRUE	AT2-IP-QA-0052 v.1
	Room temperature test setup (Digital)	TRUE	AT2-IP-QA-0042 v.1

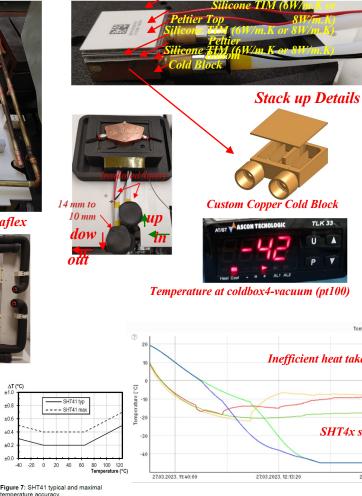
- ITk Triplet module QC test setup requires several detailed qualifications.
- Source-scan within the XYZ moving stage has already been implemented and integrated with a LabView framework.
- Mini-X2 X-ray unit with active cooling and temperature sensing units is loaded.
- The required control and hard interlock of mini-X2 (in case the cabinet gets open) are also implemented in the LabView framework.

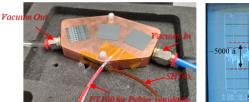


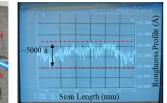
FASE2_ATLAS

TIFPA General Assembly

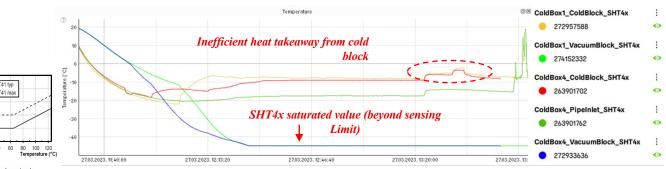

QC Test setup (parallel cooling circuits)

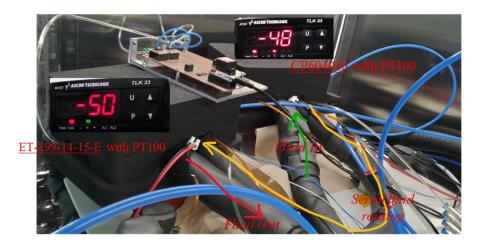


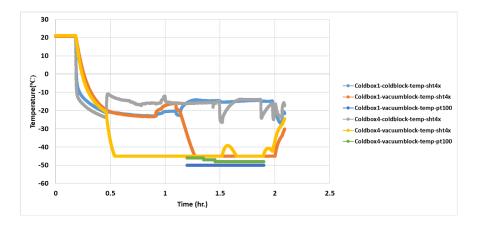

Insulated with 6mm thick Armaflex



Vacuum Sensing Unit




- Cu-based cold block and vacuum chuck prototypes designed for better heat transfer. The vacuum chuck meets surface roughness requirements (<600nm) and pressure integrity.
- A custom parallel cooling circuit was implemented and tested for multiple foam boxes. The least temperature at the vacuum chuck is ~ -42 °C. (The low chiller-pressure and take-away heat power are the bottlenecks)

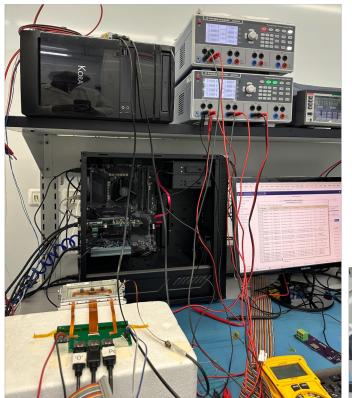

FASE2_ATLAS

TIFPA General Assembly

QC Test setup (Serial cooling circuits)

Serial Cooling Circuit

- An alternate serial cooling tested and found to work for twofoam-boxes (vacuum block reaches ~-50 °C).
- Serial cooling circuit is recommended for multiple boxes as the heat from the 1st cold block aggregates to the following chain.
- A new yet simpler parallel distribution block was designed and is under investigations.



A new parallel chiller fluid distribution Unit

FASE2_ATLAS

TIFPA General Assembly

QC Test setup (associated hardware developments)

A module reception test setup at RT

- All necessary PCs, Programmable PS, and multimeter are procured and being used.
- A 1-to-24 parallel HV splitter is designed. It allows reverse biasing up to 300 V. Per channel, it can sense current (min. current resolution: 100 nA), and trip relay connection it a sensor draws current ≥1 mA. It is yet to be integrated in the LabView framework.
- An Arduino-based vacuum sensing unit designed and tested successfully (yet to be integrated in the LabView framework).
- An Arduino-based temperature and humidity unit fabricated (yet to be populated, tested, and integrated in the LabView framework).
- Trento received a prototype PCB from Bologna for hard-interlock relays. Detailed <u>interlock-conditions</u> will be implemented.

An interactive reverse HV splitter

QC Test setup: summary

- INFN-Trento is now a qualified QC institute when it concerns the adequate infrastructure.
- ITk Triplet module QC test setup has several strict challenges (more critical than quadtesting). The set requirements also change with the testing community experiences, and became bumpy for a steady setup developments.
- INFN Trento is already progressed significantly. The required XYZ stage of the mini-X2 stage and its associated control and hard interlock were successfully implemented.
- The parallel cooling circuit optimization is being investigated.
- The required commercial hardware: PC, PSs, Multimeter, and FPGAs are procured and are being used by incorporating the necessary custom DAQ software packages.
- Several custom hardware are developed, tested, and already met the required functional benchmark from the ITk testing community.
- The ambient sensor-based interlock-part is not yet ready.

Piano attività TN 2023-2024

- Test elettrici e funzionali su sensori e moduli ITKPix1
 25x-100 irraggiati a fluenze di interesse ITk (~1.7x10¹⁶ n_{eq}/cm²)
- Confronto tra simulazioni e risultati misure
- Qualificazione elettrica (a campione) su sensori 3D lotti di produzione
- Completamento dell'allestimento setup per la qualificazione dei moduli 3D e inizio del lavoro

Riassunto FTE 2024 (preliminare)

(*) + 1.5 FTE su sigle sinergiche:

AIDAInnova IGNITE

Nome e Cognome	Ruolo	ATLAS	FASE2_ATLAS
Gian-Franco Dalla Betta (R.L.)	PO	10%	30%
Giovanni Verzellesi	PO		50%
David Macii	PA		50%
Roberto luppa	PA	50%	
Giacomo Baldi	PA		40%
Francesco Follega	RTD-A	20%	
Ester Ricci	RTD-A	20%	
DMS Sultan	Asseg.		100%
Arif Samy (*)	Asseg.		50%
Andrea Di Luca	Asseg.	100%	
Greta Brianti	Dott.	100%	
Daniela Mascione	Dott.	100%	
Jixing Ye	Dott.		80%
Abderrezak Boughedda	Dott.		50%
Marco Cristoforetti	FBK	50%	
Maurizio Boscardin	FBK		20%
Nicola Zorzi	FBK		30%
Francesco Ficorella	FBK		10%
Sabina Ronchin	FBK		40%
Giovanni Paternoster	FBK		10%
Totale FTE		10.1 + 1.5 (*) = 11.6	

Riassunto richieste 2024 (preliminare)

Voce	Richiesta
Missioni	
Metabolismo MI	11.5
Metabolismo ME	44.0
Irraggiamenti e test beam FASE2 (1 mese uomo)	4.0
ESP per duties (3.87 FTE)	22.0
Consumabili:	
 Metabolismo consumo 	17.5
Consumo per QA/QC moduli	3.0
Gettone" consumo per clean room	2.0
Totale (k€)	104.0