5 Luglio 2023 Preventivi 2024 Gruppo IV

Francesco Sanfilippo

Iniziative Specifiche di Gruppo IV

Sigla	FTE	Responsabile	Descrizione 🔶	Impegni 🔶	Disp. Teorica 🕈
	SPIF 10.25 → 7.3 Giuseppe Degrassi Davide Meloni	Ciucoppo Dogracci	Strumenti tecnico-speci	3.075,56	412,73
SPIF		Davide Meloni	Rimborso per viaggio e	5.569,94	430,06
LQCD123	5.55 → 6.40	Francesco Sanfilippo	Indennità di missione	1.192,42	3.585,58
			Acquisto di servizi per	200,00	22,00
GSS	3	Dario Francia	Altri servizi diversi n	300,00	0,00
TOTALE	16.7	Diminuzione per chiusura INDARK	Attrezzature scientific	26.811,94	24,76
				37.149,86	4.475,13

+ 1 Postdoc Gr IV (SPIF) coming in October (Joao Penedo)

SPIF @ RMIII

- Phenomenology for present and future colliders
- Flavor physics bounds to BSM
- Neutrino physics

Degrassi	Giuseppe	Associato	100%
Simula	Silvano	Staff	20%
Greco	Mario	Senior	*
Giarnetti	Alessio	Dottorando	100%
Marciano	Simone	Dottorando	100%
Ciuchini	Marco	Staff	80%
Franceschini	Roberto	Associato	90%
Lubicz	Vittorio	Associato	20%
Meloni	Davide	Associato	100%
Tarantino	Cecilia	Associato	20%
Ronca	Jonathan	Assegnista	100%

On the NLO QCD Corrections to Gluon-Initiated ZH Production Giuseppe Degrassi^{a,l}, Ramona Gröber, Marco Vitti and Xiaoran Zhao

arXiv:2205.02769v2

R.Franceschini Activity

- ∘ done
 - top quark mass at LHC with B-hadrons (2212.03929 with Maryland and Santa Barbara)
 - muon collider physics and WIMPs (2212.11900 with Xiaoran Zhao (Roma 3))
 - Belle II Axion Like Particles (upcoming arXiv with Francesca Acanfora (GGI & Roma 3 PhD) Alessio Mastroddi (Roma 3 PhD) and Diego Redigolo (CERN, INFN FI)
- current
 - W mass at muon collider (Includes Jonathan Ronca (Roma3))
 - Zh + X at muon collider and FCChh (with INFN LNF and CERN)
 - t and W precision mass measurements to spot light new physics (with Maryland, LNF, CERN)
- $^{\circ}$ coordination of ECFA group on direct search of new physics at the Higgs/Top/Electroweak e^+e^- factory
- PRIN 2022 with Pisa, Padova, INFN on dark matter, flavor and future colliders

R.Franceschini Activity

Search for EW Dark matter at $\mu\mu$ collider

- Xe signal of heavy WIMP opens the chase from 1 TeV to fraction of PeV mass
- most solutions to open issues of the SM require new EW particles

Weak radiation yield the most constraining channel "mono-W"

D. Meloni – Flavor Problem in Neutrino Physics

Awarded of the Horizon 2020: ESSnuSB plus - Roma Tre University node New Physics in the neutrino sector at the future facility ESSnuSB in Sweden

Collaborators:

- Alessio Giarnetti (postdoc),
- Simone Marciano (PhD),
- Matteo Parriciatu (borsista);
- Joao Penedo (Postdoc Gruppo IV, from October)

Publications:

- P.B.Denton, A.Giarnetti and D.Meloni, JHEP 02 (2023)
- G.Arcadi, S.Marciano and D.Meloni, Eur. Phys. J. C 83 (2023)

Preprints:

- S.K.Agarwalla, S.Das, A.Giarnetti, D.Meloni and M.Singh, [arXiv:2211.10620 [hep-ph]]
- D.Meloni and M.Parriciatu, [arXiv:2306.09028 [hep-ph]].

D. Meloni – Flavor Problem in Neutrino Physics

Suggested solutions

 m_M^L

 m_D

No clue on mixing !

*m*_{liaht}

 \mathcal{M} =

 m_D

 m_M^R

* Hierarchical Pattern

Froggatt-Nielsen mechanism

Too many O(1) coefficients Works better for small mixing

discrete flavour symmetries

* mixing angles

elegant explanation: non-Abelian

Complicated scalar sector

Working hard to find a reliable solution!

LQCD123 @ RMIII

NPQCD calculations of hadronic matrix elements

Inclusive decays via Inverse Laplace Problem

- QED effects in spectrum and decay
- Precision below % for selected observables

Sanfilippo	Francesco	Staff	100%
Simula	Silvano	Staff	70%
Martinelli	Guido	Senior	50%
Melis	Aurora	Borsa Gr IV	100%
Lubicz	Vittorio	Associato	80%
Di Palma	Roberto	Dottorando	100%
Tarantino	Cecilia	Associato	80%
Gagliardi	Giuseppe	Assegnista	100%

4.5k€ per missioni nel 2022

2 Prin 2021 awarded: V.Lubicz (University RM3, PI) and S.Simula (INFN RM3, PI @Torino)

The g $_{\mu}$ -2 puzzle

Extremely precise measurement

More than 4σ discrepancy with theory!

Extremely precise

The g $_{\mu}$ -2 puzzle

Extremely precise measurement

More than 4σ discrepancy with theory!

So far, experimental R-Ratio in place of leading hadronic contribution

Lattice came in - The "new" g $_{\mu}$ -2 puzzle

Do we know precisely R(E)?

Partial contribution of R(E) to g-2

"Energy Window observables"

Do we know precisely R(E)?

Partial contribution of R(E) to g-2

"Energy Window observables"

Three different contributions can be computed on the lattice from different times of the correlator: SD = Short Distance, W=(intermediate) Window, LD=Long Distance

Do we know precisely R(E)?

- R(E) computed on the lattice disagrees with experiment at ~1 GeV energies
- Agreement at large energies (and likely at very small energies)

[ETM collaboration, Phys.Rev.D 107 (2023) 7, 074506] 97 citations on INSPIRE!

Infamous No-go theorem [L.Maiani, M.Testa Phys.Lett.B 245 (1990) 585-590]

Infamous No-go theorem [L.Maiani, M.Testa Phys.Lett.B 245 (1990) 585-590]

In Minkowski spacetime
$$C(t) = \int_{E_0}^{\infty} e^{-iEt} R(E) E^2 dE$$
 Inverse Fourier Transform

Infamous No-go theorem [L.Maiani, M.Testa Phys.Lett.B 245 (1990) 585-590]

In Minkowski spacetime
$$C(t) = \int_{E_0}^{\infty} e^{-iEt} R(E) E^2 dE$$
 Inverse Fourier Transform

On the lattice we are forced to change t
ightarrow i au

In Euclidean spacetime

dean me
$$C(\tau) = \int_{E_0}^\infty e^{-E\tau} R(E) E^2 dE$$
 Inverse Laplace Transform

Infamous No-go theorem [L.Maiani, M.Testa Phys.Lett.B 245 (1990) 585-590]

In Minkowski spacetime
$$C(t) = \int_{E_0}^{\infty} e^{-iEt} R(E) E^2 dE$$
 Inverse Fourier Transform

On the lattice we are forced to change t
ightarrow i au

In Euclidean spacetime

dean
$$C(\tau) = \int_{E_0}^{\infty} e^{-E\tau} R(E) E^2 dE \quad \text{Inverse Laplace Transform}$$

Can determine "easily" $R(E_0)$ at threshold energy by taking $au o \infty$

Infamous No-go theorem [L.Maiani, M.Testa Phys.Lett.B 245 (1990) 585-590]

In Minkowski spacetime
$$C(t) = \int_{E_0}^{\infty} e^{-iEt} R(E) E^2 dE$$
 Inverse Fourier Transform

On the lattice we are forced to change t
ightarrow i au

In Euclidean spacetime

h
$$C(\tau) = \int_{E_0}^{\infty} e^{-E\tau} R(E) E^2 dE$$
 Inverse Laplace Transform

Can determine "easily" $R(E_0)$ at threshold energy by taking $au o \infty$

So far, it was considered **impossible** to determine hadron properties above threshold, beside special cases, from lattice simulations

Solve the Inverse Laplace transform numerically

Old ideas studied in Geophysics: [G.E Backus and F.Gilbert, 1968] Determine a "smoothed" inverse Laplace transform

$$R(E) \to R_{\Delta}(E) = \int \Delta(E-x)R(x)dx$$

Solve the Inverse Laplace transform numerically

Old ideas studied in Geophysics: [G.E Backus and F.Gilbert, 1968] Determine a "smoothed" inverse Laplace transform

$$R(E) \to R_{\Delta}(E) = \int \Delta(E-x)R(x)dx$$

Adaptation to Particle physics needed: implement a method to fix the smoother Δ [M.Hansen, A.Lupo, N.Tantalo, PRD 99 2019]

Solve the Inverse Laplace transform numerically

Old ideas studied in Geophysics: [G.E Backus and F.Gilbert, 1968] Determine a "smoothed" inverse Laplace transform

$$R(E) \to R_{\Delta}(E) = \int \Delta(E-x)R(x)dx$$

Adaptation to Particle physics needed: implement a method to fix the smoother Δ [M.Hansen, A.Lupo, N.Tantalo, PRD 99 2019]

Smoothed inverse Laplace transform $R^{teo}_{\Lambda}(E)$ can be compared with smoothed $R^{exp}_{\Lambda}(E)$

Proof-of-concept calculation with $\,\Delta\,$ of size ~440 MeV

"Probing the Energy-Smeared R-Ratio Using Lattice QCD", Phys.Rev.Lett. 130, 2023

Comparison of R(E) smoothed over ~440 MeV

"Probing the Energy-Smeared R-Ratio Using Lattice QCD", Phys.Rev.Lett. 130, 2023

- At these details level, no discrepancy visible yet
- More statistics needed to increase the resolution
- Applied to EuroHPC call, 4M Gpu Hours on Leonardo? Stay tuned

Same idea applied to radiative decays arXiv:2306.07228

Spectral-function determination of complex electroweak amplitudes with lattice QCD

R. Frezzotti and N. Tantalo Dipartimento di Fisica and INFN, Università di Roma "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Roma, Italy

G. Gagliardi, F. Sanfilippo, and S. Simula Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy

V. Lubicz Dipartimento di Matematica e Fisica, Università Roma Tre and INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy (Dated: June 13, 2023)

Fondato con PNRR, guida INFN INAF

Kick off meeting 26 nov 2022

	0004		Mesi Uomo/Anno (per 3	
	Nome	Sezione	anni)	% FTE
1	Tommaso Boccali	INFN Pisa	3.0	25.0%
2	Simone Gennai	INFN MIB	4.0	33.3%
3	Pia Astone	INFN Roma1	4.0	33.3%
4	Lucia Silvestris	INFN Bari	4.0	33.3%
5	Stefano Piano	INFN Trieste	3.0	25.0%
6	Lucio Anderlini	INFN Firenze	3.0	25.0%
7	Stefano Bagnasco	INFN Torino	4.0	33.3%
8	Leonardo Cosmai	INFN Bari	3.0	25.0%
9	Daniele Spiga	INFN Perugia	3.0	25.0%
10	Alessandro De Salvo	INFN Roma1	2.0	16.7%
11	Vincenzo Vagnoni	INFN Bologna	3.5	29.2%
12	Giuseppe Andronico	INFN Catania	3.0	25.0%
13	Giovanni Mazzitelli	INFN Frascati	1.0	8.3%
14	Silvio Donato	INFN Pisa	3.0	25.0%
15	Andrea Celentano	INFN Genova	1.5	12.5%
16	Michele Pepe	INFN MIB	4.0	33.3%
17	Francesco Sanfilippo	INFN Roma3	3.0	25.0%
18	Valerio Ippolito	INFN Roma1	3.0	25.0%
19	Domenico Elia	INFN Bari	3.0	25.0%

FS Partecipa con il 25% su WP 2 e 4

WP2: Design and development of science-driven tools and innovative algorithms for Theoretical Physics

WP4: porting of applications to GPUs

Attività e prestazioni del centro

- ~ 15 tra borse di dottorato ed RTDA alle sedi universitarie membre del centro
- Use cases finanziati con tempo di calcolo su nuove facilities @Tecnopolo Testbed, prototipazione, porting
- Scuola di formazione su GPU

 → dedicato ai membri del centro
- Formazione su uso di FPGA in medio futuro

Attività e prestazioni del centro

- ~ 15 tra borse di dottorato ed RTDA alle sedi universitarie membre del centro
- Use cases finanziati con tempo di calcolo su nuove facilities @Tecnopolo Testbed, prototipazione, porting
- Scuola di formazione su GPU

 → dedicato ai membri del centro
- Formazione su uso di FPGA in medio futuro

Open call presentata da FS per attività di sviluppo di codici QCD+QED su GPU

Richiesto 1 RTDA – sotto valutazione

Spoke 2 - Cascade Call for Basic simulations of QCD and QCD+QE	Research Activities: Call 1 "Development of a GPU library for massively parallelized D on the lattice"
Reference WPs/Tasks: Spoke 2 /	WP1 / Task XXX
Scientific PI(s): TBD	
Allocated funds: 150-200 kEuro	
Expected Duration: 24 Months	

Objectives: The applicant is requested to participate in the activities of Spoke 2 / WP1 / Task XXX, by realizing a library to perform massively parallelized lattice simulations of QCD and QCD-like theories on GPU architecture.

The package should:

- explicitly target Wilson-like and staggered regularizations;
- implement the correlation functions needed to study QCD and QCD+QED theory;
- support, but not be tied to, the GPU architecture in use at the BolognaTecnopolo (NVIDIA).

In particular, the support for the NVIDIA GPU architecture must be implemented in a way to allow the execution on pure CPU systems for code validation. A strategy allowing future extentions to different vendors/architectures must be adopted.

The package must be able to scale up to O(200) GPUs. High performances are required, and a list of optimizations implemented must be presented, allowing proper measurement of the improvement achieved on a set of tasks central to the calculation.

The software must adhere to high quality standards and include:

- full documentation;
- regression tests;
- comphrensive examples.

The code results must be validated against known results in the context of QCD+QED physics.

...possono rispondere le università non membro: es. Roma Tre...?