

3rd EPS-TIG Hands-on Workshop Petrovac na Moru, Montenegro July 07 - 09, 2023

Extreme Light Infrastructure What is ELI ERIC?

Mateusz Rebarz

project supported by:

What is ELI ?

The Extreme Light Infrastructure is the world's largest and most advanced high-power laser infrastructure and a global technology and innovation leader in high-power, high-intensity, and short-pulsed laser systems.

ELI is the first European Strategy Forum on Research Infrastructures (ESFRI) Landmark constructed in the Central Eastern European Member States. Three world-class highpower, high-repetition-rate laser facilities have been established in Czech Republic (ELI Beamlines), Hungary (ELI-ALPS) and Romania (ELI-NP)

2

project supported by:

ELI Facilities

Czech Republic, Dolní Břežany (outskirts of Prague) (in ERIC since April 2021)

Extreme peak power: 10 PW

- Particles acceleration
- X-ray sources

Hungary, Szeged (in ERIC since April 2021)

Extreme pulse duration: 166 as

- Attosecond physics
- Few-cycle pulses from THz to UV

Romania, Magurele (outskirts of Bucharest) (in ERIC soon)

Extreme photon energy: 19 MeV

- Photonuclear physics
- Gamma sources

3

beamlines

What is ERIC ?

The European Research Infrastructure Consortium (ERIC) is a legal framework created by the European Commission to allow the operation of Research Infrastructures of Pan-European interest.

Member countries support ELI ERIC jointly with national funding

4

project supported by:

Petawatt-class lasers worldwide

Europe leads the world in laser production and installation, especially state-of-the-art systems

- **Investment** in high-power laser systems in Europe is connected to **a strong and relatively consolidated** community in Laserlab Europe beginning in 2001.
- The ELI Facilities are introducing > 33 PW (3x10PW @10Hz systems)

SOURCE: Courtesy of J.L. Collier, CLF RAL, UK

5

project supported by:

ELI vs Synchrotrons

Accelerator based sources

- Reliability
- Tuneability
- ⊕ Flux

6

- Limited temporal resolution
- Synchronization

Laser-driven sources

- Synchronization
- Temporal resolution
- Flexibility (pump-probe)
- Limited tuneability
- ⊖ Flux

High complementarity between synchrotrons and ELI infrastructure

Available end-stations

Optical stations

- UV-VIS-IR Transient Absorption
- Stimulated Raman Spectroscopy
- Time-Resolved Ellipsometry
- Transient Current Technique

Soft X-ray stations

- Electron and Ion Time of Flight
- Coherent Diffractive Imaging
- VUV Ellipsometry

7

Hard X-ray stations

peamlines

- Time-Resolved X-ray Diffraction
- Time-Resolved X-ray Absorption

Acceleration stations

- Laser-Plasma Electron Accelerator
- Laser-Plasma Ion Accelerator

Others

- Nonlinear THz Spectroscopy
- Photoemission electron microscopy (PEEM)

project supported by:

Access to ELI Infrastructure

ELI ERIC is Open to the World

A user facility with three access modes

- Excellence-Based Access Evaluation of proposals by international peer-review panels. *Results of experiments published and open.*
- Mission-Based Access Thematic research granted on the basis of scientific missions pursuing challenges. Proposals reviewed by international panels. *Results published and open.*
- Proprietary Access Paid access for industrial or other users.
 Results are retained by the user, consistent with ELI ERIC's Data and IPR Policy.

8

project supported by:

Calls for Users

Contact

My proposals

Terms and Conditions

User Portal: https://up.eli-laser.eu/

User guide

Access ELI's world-class lasers, instruments and facilities

Instruments

User calls

Extreme Light Infrastructure provides international scientific teams with access to the world's most intense lasers

Browse instruments

eli User Portal

Apply for beamtime

Call for Users Next call open in September!

project supported by:

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

-ò;-

3rd EPS-TIG Hands-on Workshop Petrovac na Moru, Montenegro July 07 - 09, 2023

Extreme Light

What does it mean?

Mateusz Rebarz

mateusz.rebarz@eli-beams.eu

project supported by:

Extreme Light Infrastructure

Ultra-high power (up to 10 PW)

10 PW = 10¹⁶ W = = 10 000 000 000 000 W

Total electricity generating capacity:

<u>All World</u>: 0.0053 PW <u>U.S. + EU</u>: 0.0019 PW

Sun power shining on Earth: 174 PW

project supported by:

Extreme Light Infrastructure

beamlines

project supported by:

Extreme Light Infrastructure

3rd EPS-TIG Hands-on Workshop Petrovac na Moru, Montenegro July 07 - 09, 2023

Experimental Science at ELI

Mateusz Rebarz

mateusz.rebarz@eli-beams.eu

project supported by:

Experimental science at ELI

Particle acceleration

Plasma physics

X-ray sources

Exotic physics

Bio/molecular and material science

project supported by:

Experimental science at ELI

Particle acceleration

Plasma physics

X-ray sources

Exotic physics

peamlines

Bio/molecular and material science

16

Exotic Physics

Relativistic regime: ultrahigh intensity interactions occurring in the laser field $> 10^{18}$ W/cm² **10 PW** 10^{24} W/cm^2 μm L electron-positron pairs **Relativistic flying** Positron mirror nucleu $\vec{B} \sim const.$ Driver Vacuum Laser Detector flying birefringence probe-photons length L

the focusing of a 10 PW laser pulse requires the use of sophisticated ellipsoidal plasma mirror setups (solid-state-based optics is not useful due to damage threshold)

Experimental science at ELI

Particle acceleration

Plasma physics

X-ray sources

Exotic physics

Bio/molecular and material science

project supported by:

Plasma Physics

Plasma: fundamental state of matter representing most of the non-dark matter in the universe (electrons + ions + neutral atoms)

High-energy density plasma: pressures > 1 Mbar, energy densities > 10^{11} J/m³. Lasers are the only way to create such conditions in a controlled way in the laboratory.

beamlines

project supported by:

Experimental science at ELI Beamlines

Particle acceleration

Plasma physics

X-ray sources

Exotic physics

Bio/molecular and material science

project supported by:

Ions acceleration

Target Normal Sheath Acceleration: laser generated collective displacement of a large number of electrons at the rear surface of **thin solid** target creates the field accelerating ions

Target Easer Electron cloud

Application: Hadron therapy method of a treatment of tumors using accelerated ions

beamlines

21

project supported by:

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Rev. Mod. Phys. 85, 751

Electrons acceleration

Laser wakefield acceleration: laser pulse propagating through the **plasma** produces a wave behind which the electrons are accelerated

Application: LWFA sources

x-rays are generated by the oscillations of energetic electron beams

beamlines

project supported by:

Experimental science at ELI Beamlines

Particle acceleration

Plasma physics

X-ray sources

Exotic physics

eamlines

Bio/molecular and material science

project supported by:

Laser driven X-ray sources

beamlines

project supported by:

Operational Programme Research, Development and Education

Laser driven X-ray sources

25 ei beamlines

project supported by:

Experimental science at ELI

Particle acceleration

Plasma physics

X-ray sources

Exotic physics

beamlines

Bio/molecular and material science

Bio/Molecular & Material Science

Time-resolved spectroscopy: any technique that allows to measure the temporal dynamics and the kinetics of photophysical processes

27 ei beamlines

project supported by:

Pump-probe techniques at ELI

beamlines

project supported by:

New values for society

New scientific challenges for technology development:

- Biomedical
 Cancer treatment, new drug development
- Material
 New materials, nanomaterials
- Molecular New generation of chemical compounds
- Energetics
 Laser fusion system, new energy sources

Technical solutions for industrial users:

- 3D imaging and diffraction of unique complex biological structures
- Extreme field conditions
- Optical spectroscopy and molecular dynamics
- Pump & probe experiments

3rd EPS-TIG Hands-on Workshop Petrovac na Moru, Montenegro July 07 - 09, 2023

Ultrashort laser pulses

Mateusz Rebarz

mateusz.rebarz@eli-beams.eu

project supported by:

How to generate fs laser pulse ?

eli

beamlines

project supported by:

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

MINISTRY OF EDUCATION

How to generate fs laser pulse ?

Optical Kerr effect – self-focusing

Ti:sapphire (Sapphire crystal doped with Titanium (Ti³⁺) ions)

eli

32

beamlines

project supported by:

CPA technology

ELI Lasers

ELI Beamlines L2 * L1 L3 L4 5 TW 100 TW **1 PW** 10 PW 100 mJ 21 30 J 1.5 kJ 150 fs 15 fs 25 fs 30 fs 1 kHz 50 Hz 10 Hz 0.01 Hz

* target in 2026

Technologies

DPSSL

Diode Pumped Solid State Laser **OPCPA**:

Optical Parametric Chirped-Pulse Amplification

project supported by:

3rd EPS-TIG Hands-on Workshop Petrovac na Moru, Montenegro July 07 - 09, 2023

ELI Beamlines

Mateusz Rebarz

project supported by:

ELI Beamlines is an international user facility for fundamental and applied research using ultra-intense laser and particle beams

Beamline	u	L2	LE C	L4
Peak power	>5 TW	PW	≥PW	10 PW
Energy in pulse	100 mJ	≥15 J	≥30 J	≥1.5 kJ
Pulse duration	<20 fs	≤15 fs	≤30 fs	≤150 fs
Rep rate	1 kHz	10 Hz, >10 Hz	10 Hz	1 per min

Department of Laser Systems

Experimental departments

- Department of Plasma Physics and Ultra-high Intensity Interactions
- Department of Radiation Physics and Electron Acceleration
- Department of Ion Acceleration and Applications of High Energy Particles
- Department of Structural Dynamics

Czech Republic Dolní Břežany (on the outskirts of Prague)

www.eli-beams.eu

36

project supported by:

Laser building 16,500 m² Laboratories 4,500 m² Offices 4,400 m² Multifunction areas 2,300 m²

project supported by:

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

37

ei beamlines

38

project supported by:

project supported by:

project supported by:

Experimental Hall

project supported by:

High Harmonics Generation (HHG)

project supported by:

High Harmonics Generation (HHG)

Gas	λ _{xυv} (nm)	Estim. XUV energy (µJ)
Xenon	≥50	2
Argon	≥30	0.2
Neon	≥13	0.02
Helium	≥10	0.02

L1: λ=830 nm, τ=15 fs, 10 mJ

beamlines

43

project supported by:

MAC chamber & AMO science

Cluster source

- Rare-gas clusters and He nanodroplets
- Based on a cryo-cooled Even-Lavie valve
- Cooling: Sumitomo RDK408E2 cryo-cooler
- Double skimmer setup

44

Cluster size is tuned by temperature and pressure behind the nozzle

peamlines

Upgrade: doping of He nanodroplets

MAC: Multi-purpose chamber for AMO (Atomic, Molecular, Optical) and CDI (Coherent Diffractive Imaging) science.

Detectors: Electron and Ion Time of Flight spectrometer (in-house development) Velocity Map Imaging (VMI 75 mm MCP with a phosphor screen and ns gated imaging detector) **Samples delivery:** Cluster source – for rare-gas and water clusters with sizes from few to 100 nm. Molecular source (5 KHz), aerosol injection.

Plasma X-ray Source (PXS)

Cu-tape source: ~ 8 keV X-rays

2.9e10 ph/(shot*sr) @ 1 keV bandwidth

beamlines

Complementary CW sources: Cu and Mo anodes – 10⁸ ph/sec

3-30 keV Bremsstrahlung (continuum)

project supported by:

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

45

X-Ray Diffraction & Spectroscopy (XRD/XAS)

Hard X-ray Diffraction

Euler cradle goniometer

simultaneously rotating the investigated sample at 360° and positioning the X-ray detector at desired angle and distance.

Detection

recording of the diffracted and scattered X-ray photons by a single photon counting hybrid pixel 3 kHz detector (Eiger X 1M, Dectris)

beamlines

Hard X-ray Spectroscopy focusing sample crvstal focusing polycapillary optic custom-developed Mo anode Andor CCD camera X-ray tube

Spectrometer

von Hamos design with gratings from 4 to 12 keV

Detection

custom designed CCD (Andor) with greater acceptance angles and beryllium window filtering background illumination

UROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

project supported by:

Optical Spectroscopy Stations

UV-VIS-IR Transient Absorption: monitoring excited and transient states of molecules, atoms and materials

Stimulated Raman Spectroscopy: monitoring Raman vibrational spectra of molecules to follow structural changes with high time resolution

TR Ellipsometry: measures the polarization response of samples providing optical constants of the material in an excited states and during the time evolution of these states

Light sources

Ti:saph - fs lasers (800 nm, 20-35 fs, 1 kHz) **OPA** - Optical Parametric Amplifiers (0.25-2.5 μm) **HCF** - Hollow Core Fiber (5 fs, 250 - 1100 nm)

project supported by:

European Structural and Investing Funds Operational Programme Research elonment and Educatio

47

Compressor for 10 PW laser

project supported by:

eli

3rd EPS-TIG Hands-on Workshop Petrovac na Moru, Montenegro July 07 - 09, 2023

Experiment 1

Optical spectroscopy

Mateusz Rebarz

mateusz.rebarz@eli-beams.eu

project supported by:

Spectroscopy

What is spectroscopy?

Spectroscopy is a technique used to study the **interaction between matter and light** across a wide range of wavelengths.

Why is spectroscopy important?

Spectroscopy is used in various fields of science and technology, including chemical analysis, environmental monitoring, material characterization, medical diagnostics, and astronomical studies.

What do we measure?

Spectrum = the intensity (or flux) of radiation as a function of wavelength

What properties of incident or generated light can we measure?

- Absorption
- Reflection
- Emission
- Scattering

50

• Polarization, refraction and many others

Optical spectroscopy

Spectrometer

What is a spectrometer?

A spectrometer separates an incoming light source into its spectral components, while measuring the outgoing light intensity emitted by a substance over a broad spectral range. The incident light from the light source can be transmitted, absorbed or reflected through the sample. It is widely used for spectroscopic analysis of sample materials.

peamlines

project supported by:

Operational Programme Research, Development and Education

Absorption spectroscopy

Absorption spectra (also known as UV-Vis spectra, absorbance spectra and electronic spectra) show the change in absorbance of a sample as a function of the wavelength of incident light . The intensity of light transmitted through the sample, I_{sample} (such as an analyte dissolved in solvent) and the intensity of light through a blank, I_{blank} (solvent only) are recorded and the absorbance of the sample calculated using:

Emission spectroscopy

In emission spectroscopy, a sample is illuminated with monochromatic light (typically ultraviolet or visible) with an energy the sample compounds can absorb. The sample absorbs these excitation photons, exciting the molecule from its ground state to an excited electronic state (absorption). The molecule then falls back to the ground state, and the resulting energy is emitted as a photon—causing the molecule to fluoresce. The intensities and frequencies of these photons are detected and analyzed.

54

peamlines

MINISTRY OF EDUCATION YOUTH AND SPORTS

evelopment and Education

Experimental setup

55 ei beamlines

project supported by:

