The reSPECT project for a flexible and fast total body nuclear imaging diagnoses with high-Z organic scintillators

- Use plastic scintillators instead of inorganic crystals to profit from their fast signal, ease of manipulation and low cost.
- Plastic scintillators are not optimised for the detection of gamma rays via photoelectric effect.
- The idea is to enrich our organic scintillators with high-Z impurities (e.g. Bismuth or Cerium) [1]
- [1] Mattiello L;, Patera V.; Belardini A.; Rocco D.; Marafini M. Organic Scintillator. *Patent* WO2023156957A1, 2023.

EJ-200 (pure)		Sample	Measured #photoelectrons	We produced samples of high-Z organic
EJ-256 (Pb 5%)		EJ-256 (Pb	45 ± 10	scintillators polymerised in TEFLON in
EJ-256 (Pb 1.5%)	Minere Halt	EJ-256 (Pb	14 ± 1	order to study the matching with this
		2N 14% (Bi	42 ± 3	■ material ■ Results show a very good collection
2N 14% (Bi 5%)	Same and Same	2N 14% (Bi	17 ± 2	efficiency and transparency
2N 14% (Bi 2%)		2N 14% (Bi	21 ± 1	SAPIENZA CON MINISTER CONTRACTOR ACCOUNTS AND ACCOUNTS AN
Rotating detection Ring	MODULE Side View		Sys	stem performances

ting detection	MODULE Side View
-35 em	2 cm

System performances									
SPECT DETECTION SYSTEM	SENSITIVITY PER MODULE @140 keV	SYSTEM SPATIAL RESOLUTION (FWHM) @10 cm	DECAY TIME	RATE CAPABILITY	TOTAL COST	MRI COMPLIANCE	RADIOMETABOLIC DOSIMETRY COMPLIANCE		
Anger Camera (Nal) FoV: 53 x 39 cm ²	170 cpm/µCi	7.4 mm	250 ns	0.25k-3k cps/cm ²	\$\$	×	×		
CZT FoV: 39 x 51 cm ²	190 cpm/µCi	7.6 mm	350 ns	30k-700k cps/cm ²	\$\$\$	 Image: A start of the start of	×		
reSPECT 6 rotating blocks, FoV: 35 x 35 cm ²	184 cpm/µCi (energy cut @80 keV)	8.9* mm (2 mm pixels)	2-5 ns	50M-200M cps/cm ²	\$	 Image: A set of the set of the	✓		
*The spatial resolution can be improved by adjusting the geometrical parameters.									