
A Deep Learning Approach for Semantic, 
Multi-Organ Segmentation of PET Images

Introduction

Semantic segmentation refers to the classification of each pixel in 
an image according to contextual information. In the medical 
setting, image segmentation tasks include organ identification, 
tissue classification and disease detection. Reliable methods to 
automatically perform such tasks would offer unprecedented 
advantages for assisting radiologic interpretation and efficiency in 
routine clinical workflows. Currently, algorithms based on 
convolutional neural networks (CNNs) are state-of-the-art for 
segmentation tasks and have seen huge success for a wide range 
of medical applications – largely focused on high resolution, 
anatomical modalities like CT and MRI. 

Nuclear medicine modalities like PET and SPECT have received 
much less attention but have seen some efforts focused on specific 
tasks like the identification of acute pathology and lesion detection 
[1]. Far fewer studies have investigated the capacity of a CNN to 
perform a more general segmentation task, delineating multiple 
organs directly on PET images [2]. Such a segmentation approach 
could open new avenues for image processing and tissue-specific 
analyses, and the work presented here investigated this in the 
context of whole- and total-body imaging with various PET tracers.
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Fig. 1.  Visual overview of the segmentations defined by the PET algorithm 
(left) and by those defined by the CT algorithm (right). These 2 subjects were 
scanned with different PET tracers, FDG on top and PSMA on bottom.

Methods

Network architecture

A standard 3D U-Net was chosen for this work [3]. It used 64 
feature channels at the highest-resolution blocks and with 
increasing numbers at each down-sampled level. Instance 
normalization was used throughout, with a soft Dice loss. The 
training objective was minimized by the Adam optimizer [4] with a 
learning rate of 10-4. The final network had ~19M trainable 
parameters. 

Data preparation and training

A set of labeled training data was generated in the following way. 
A dataset including ~1400 human subjects was first obtained 
which comprised CT image volumes and matched segmentation 
labels corresponding to 104 anatomical regions [5]. These class 
labels were used to derive a smaller set of 60 target regions 
considered to be relevant for PET image data, which were then 
used as the final training labels for the CT volumes. The list of all 
anatomical regions is given in Table 1. 

A CNN was trained to perform the CT segmentation for ~200k 
iterations. The trained algorithm was subsequently used to label a 
new set of whole-body CT volumes from subjects scanned on a 
PET/CT, and so each had an accompanying PET image. The labels 
were inspected and refined as needed. A new CNN was trained 
using the new labeled images to perform the segmentation task 
directly on the PET images. Three different tracers were included 
together in the training pool: 18F-FDG, 68Ga-PSMA and 68Ga-
DOTATATE. 

 

Results

Two subjects were reserved solely for testing and evaluation: 1 
FDG and 1 PSMA. The performance of the PET segmentation 
algorithm was compared to that of the CT segmentation in both 
subjects. For the results reported here, the organs segmented on 
CT data were used as ground truth and served as the standard 
against which the PET segmentation was evaluated. Visually, the 
segmentations defined on the PET images appeared to be of good 
quality. Figure 1 provides an overview of the performance of the 2 
segmentation algorithms for both test subjects.

Accuracy of the PET segmentation is quantified here by the total 
Dice similarity over all CT segmentations, as well as averaged over 
the individual organ classes, for each patient individually. For the 
FDG case, the total and class-averaged Dice scores were 0.83 and 
0.71, respectively, and for the PSMA case, the Dice scores were 
0.74 and 0.47, respectively.

 Discussion

A single network demonstrated the capacity to perform 
segmentations on PET image volumes for many organ classes 
simultaneously. Furthermore, a single network was able to handle 
multiple radiotracers. The defined segmentations appeared to be 
of high quality, with good morphological characteristics for all 
visualized organ regions. This was notably impressive for the more 
specific tracers, like PSMA, where, even in the large regions with 
sparse uptake, e.g., around the thoracic and abdominal spinal 
column, the algorithm was able to generate reasonable 
segmentations using only the surrounding contextual information. 
The quantitative evaluation also revealed good concordance 
between the regions delineated on the PET and those delineated 
on the CT. This was observed for both PET tracers, although the 
FDG image yielded more accurate segmentations compared to the 
PSMA image, relative to those defined on CT. 

There are notable limitations in using the CT segmentations as 
ground truth, since the PET and CT were acquired at different time 
points and there is no guarantee that the 2 image volumes are 
spatially matched across the entire body. Positional misalignment 
between the images would result in a lower Dice score, even with 
perfect performance of the segmentation algorithms. This 
consideration is motivating the search for other appropriate 
evaluation metrics to be used in future work.
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