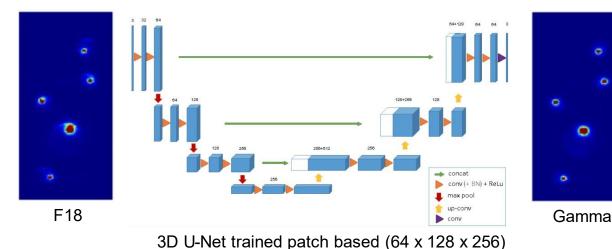

Positron-Range Correction for an On-Chip PET Scanner using Deep Learning

C. Clement¹, F. Pagano^{2,3}, M. Pizzichemi^{2,3}, G. Terragni², M. Kruithof-de Julio¹, A. Rominger¹, S. Ziegler⁴, E. Auffray², K. Shi¹

¹Inselspital, Bern, Switzerland ²CERN, Geneva, Switzerland ³University of Milano-Bicocca, Milan, Italy ⁴University Hospital, Munich, Germany

Introduction & Method


- Previously introduced On-Chip PET scanner designed for Organs-on-Chips OOCs) applications
- Trained Deep Learning model for image-to-image translation converting non-positron-range corrected images into positron-range corrected ones

Results & Discussion

DL-based approach improved the spatial resolution of the reconstructed images in the test set from FWHM values of 0.260 mm in the non-corrected images to 0.177 mm in the corrected ones

Non-Corrected	Ground-Truth	DL-corrected
0.260 mm	0.169 mm	0.177 mm

