

Performance Evaluation of a Fast Tomographic Reconstruction Software for PET

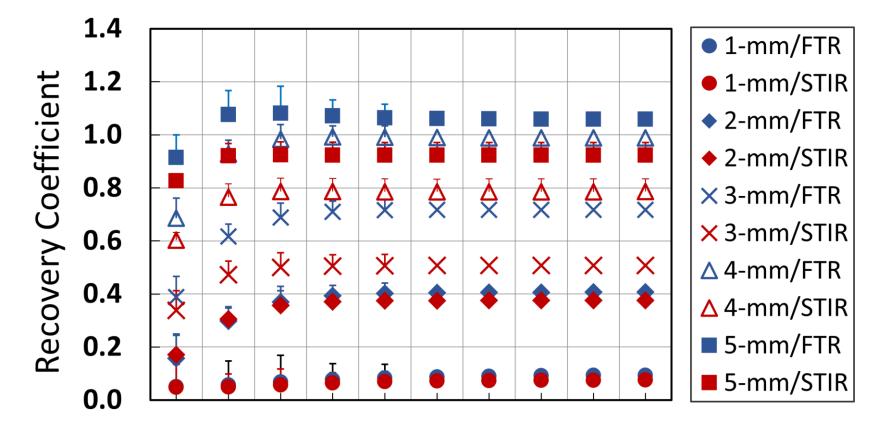
Somayeh Saghamanesh*, Christian Ritzer, Pascal Bebié, Jan Debus, Werner Lustermann, Marina Beguin, and Günther Dissertori Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland (* ssaghamanesh@phys.ethz.ch)

Aim

This study evaluates the performance of a Fast Tomographic Reconstruction (FTR) software for SAFIR small-animal PET scanner [1] in terms of image quality and reconstruction time and compares it with STIR.

Materials and Methods

Image quality was investigated according to NEMA NU 4-2008 standards [4]. Reconstructions were performed on an AMD Ryzen Threadripper 2950X 24-Core system on a single thread with following parameters:


Introduction

High-resolution reconstruction of animal image series in SAFIR-I is currently done in STIR [2], which with typical parameters takes several hours on a single CPU core. This time is increased by a factor of 10 for SAFIR-II. However, in FTR, with a known crystal map and voxel size, the system matrix is generated and stored once for a given PET scanner, and then is used during the reconstruction [3]. This approach significantly reduces the reconstruction time.

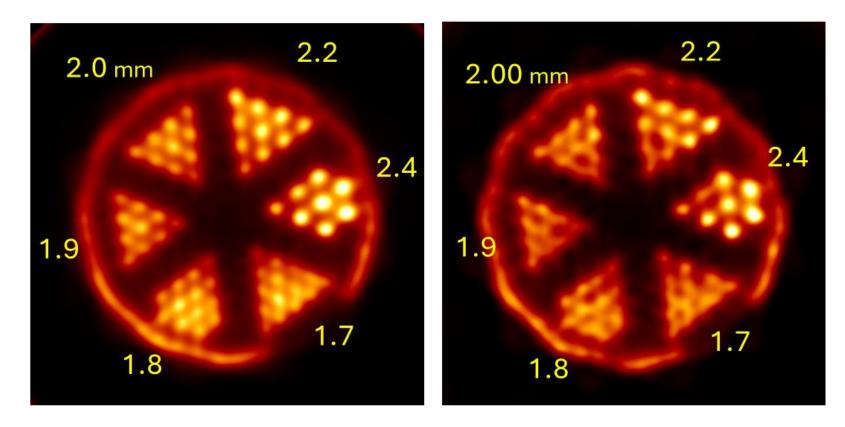

Phantom	Scanner	Scan info	Voxel size	Geometry	Method	Subsets, Iteration	Filter
Image quality	SAFIR-I (24 rings with 180 LYSO crystals)	3.35 MBq 18-F 20 min	1.13 mm (FTR), 1.1 mm (STIR)	Generic block geometry	OSEM (FTR), OSMAPOSL (STIR)	6 subsets, 1 to10 iterations	1.14-mm Gaussian
Derenzo	SAFIR-II (64 rings)	365 MBq 18-F 60 sec	0.56 mm (FTR), 0.55 mm (STIR)	Generic block geometry	OSEM (FTR), OSMAPOSL (STIR)	6 subsets, 10 iterations	0.7-mm Gaussian
Results							
FTR (7.9 min)			u 5.0 4.0 3.0 2.0 1.0		0.5 SPO1 0.4 ● FTR ● FTR ■ STIR 0.4 0.4 0.3 0.3 0.3 0.2 0.2		 water - FTR water - STIR air - FTR air - STIR
			1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3 4 5 6 7 mber of iterati	8 9 10 0.0 1 0ns	2 3 4 5 6 7 8 9 10 number of iterations	

Fig. 2. Uniformity

Fig. 1. Image quality phantom – SAFIR-I

FTR (46.8 min) STIR (128.3 min)

- **1 2 3 4 5 6 7 8 9 10** number of iterations
- Fig. 4. RCs and STD (error bars)

Fig. 5. Derenzo phantom – SAFIR-II

Discussions and Conclusion

- FTR demonstrates good quality images with improved values for uniformity, recovery coefficients, and spill-over-ratios, compared to STIR (Figs 1-4).
- FTR provides a better performance in resolving all rods closer to the center of the scanner in the Derenzo phantom than STIR (Fig 5). After 5 iterations, NEMA characteristics didn't vary significantly for both FTR and STIR (Figs 2-4).
- With the same reconstruction parameters, FTR reduces the time by 22% and 274% in SAFIR-I and SAFIR-II, respectively, compared to STIR (Figs 1, 5).

References

Fig. 3. Spill-over-ratio and STD (error bars)

1- P. Bebié et al. "SAFIR-I: Design and Performance of a High-Rate Preclinical PET Insert for MRI," *Sensors*, vol. 21, no.21, 2021.
2- K. Thielemans et al., "STIR: Software for tomographic image reconstruction release 2," *Phys. Med. Biol.* vol 57. No. 867, 2012.
3- C.E. Ritzer, "Development and First Performance Tests of the SAFIR Prototype PET-MR Scanner," Ph.D. dissertation, IPA, Dept.
Phys., ETH Zurich, Zurich, Switzerland, 2020.
4- NEMA. Performance Measurements of Small Animal Positron Emission Tomographs (PETs); NEMA Standards Publication: Rosslyn, USA, 2008.