

SAFIR-II: Design and Performance of a High-Rate Preclinical PET-MR System

Jan Debus, for the SAFIR Collaboration

The SAFIR Project

Motivation

- PET Imaging: Slow (>10 min)
- Fast kinetic processes: <1 min
- Need specialized system

Requirements

- 7 T MRI compatible
- Measurements at 500 MBq
- 2 mm spatial resolution
- Quantitative imaging
- Small-rodent images in 5 s

Simulated Oxygen-15 Time-Activity-Curve (Brain)

The SAFIR-II Positron Emission Tomography Insert

Crystal Geometry

- 2 × 2 × 13mm LYSO
- 2.2 mm pitch
- AI-ESR optical separation
- 64 rings, 12×15 crystals/ring
- \rightarrow 11520 crystals total,

145 mm axial FOV

- Hamamatsu SiPM
- 1:1 crystals-SiPM coupling

The SAFIR-II Positron Emission Tomography Insert

Digital Electronics

- PETA-8 ASICs
- Kintex-7 FPGA
- 10GBit Optical Ethernet
- MR-compatible DC-DC

Carbon fibre structure

- 199 mm outer diameter
- 114 mm inner diameter
- 70 cm length

MRI Compatibility

Evaluated using Bruker QA-Sequences and 50 mL QA-phantom

RF-Emissions

- SNR: -9.2% (full operation)
- NO visible artifacts

Switching Gradients (EPI)

- Nyquist-Ghosts visible
- Sequence adjustment removes artifacts

Left: EPI with SAFIR-II: Ghost artifacts Right: Adjusted, artifact free EPI

MRI Compatibility

B0-Field

Homogeneity not disturbed by SAFIR-II

SAFIR-II Operation

- Functional throughout sequences
- Coincidence Rate unaffected
- ⇒ SAFIR-II is MR-compatible

Top: B0-Map Baseline (after shimming) Bottom: B0-Map with SAFIR-II (after shimming)

Performance: Energy Resolution

Best: 12.1 % FWHM (²²Na point source)

Performance: Timing Resolution

Best: 221 ps (²²Na point source)

Performance: Sensitivity

Peak: 3.98%

DPHYS

Performance: Data Loss

Max: 2.3 % of Singles lost (Confirmed via Test-Trigger Method)

Spatial Resolution: Derenzo-Phantom

Spatial Resolution: <1.7 mm

Image Quality: Uniformity

Scatter

Recon:

STIR OSMAPOSL 9 Subsets, 10 Iterations 0.7mm Gauss filter

Corrections:

Attenuation: Manual μ -map Scatters: Single-Scatter-Sim (STIR) Normalization: Component-based Randoms: Singles-Prompt

Image Quality: Spill-Over-Ratio

Image Quality: Comparison

Scanner	Uniformity	SOR		RC				
		Air	Water	5 mm	4 mm	3 mm	2 mm	1 mm
SAFIR-II	2.96%	0.057	0.075	0.92	0.79	0.58	0.32	0.053
SAFIR-I	4.8%	0.218	0.220	1.08	0.84	0.54	0.28	0.04
nanoScan [®]	3.52%	0.058	0.062	1.03	0.98	0.90	0.84	0.26
SimPET-XL [™]	3.89%	0.036	0.036	0.95	0.91	0.79	0.62	0.14
Bruker	6.5%	0.12	0.22	0.94	0.95	0.91	0.64	0.14

Note: SAFIR-II evaluated at 500 MBq, all others at 3.7 MBq

First Animal Measurements

10 seconds

30 seconds

5 minutes

Sprague-Dawley Rat 283 MBq FDG 40 min after injection

First Animal Measurements

0 seconds 30 seconds 10 minutes 40 minutes

Outlook

- SAFIR-II is operational according to specifications
- Few adjustments remaining: Recon-update, recon-speed, air-tubing
- Many potential future studies:
 - NEMA characterization: NECR, spatial resolution
 - Performance optimization: recon filters, analysis adjustments, ...
 - Animal studies: OGI, impact of diets on brain metabolism, cardiac perfusion

Thank you for your attention.