10th Conference on PET, SPECT, and MR Multimodal Technologies, Total Body and Fast Timing in Medical Imaging

Comparison of Synergistic and Single Modality Anatomically-Informed Structural Priors for Yttrium-90 PET/CT and SPECT/CT Reconstruction

Sam Porter^{1,2}, Daniel Deidda², Kris Thielemans^{1,3} & Simon Arridge³

[1] Institute of Nuclear Medicine, University College London
[2] National Physical Laboratory
[3] Centre for Medical Imaging, University College London

Contents

Contents

Introduction

- Synergistic Reconstruction
- Yttrium-90
- Methods
 - The Synergistic Optimisation Problem
 - Priors Used
 - Data & Setup
 - Evaluation
- Results
- Discussion

Improved Image Quality?

Improved Image Quality?

Potential for synergistic reconstruction in MRT

The importance of dosimetry:

<u>Molecular radiotherapy</u>: targeted cancer treatment where radioactive substances are used to destroy or damage cancer cells by binding to specific molecules within the body.

We need to plan & measure dose delivered:

- Patient-tailored treatment
- Reduce chance of side-effects
- Increase accuracy of prognosis

How can we improve quantification (bias and uncertainty) whilst maintaining image quality at fixed cost?

Radiotherapy prostate treatment plan: Vernaste et al (2019)

Yttrium-90 SIRT

- SPECT low resolution
 - Spatial resolution ~10 mm
 - Wide spectrum of bremsstrahlung radiation
 - Compton down-scatter
 - Lots of photons
- PET very low count
 - Lots of noise
 - Difficult to distinguish features
 - Spatial Resolution ~ 4mm

OSEM reconstruction of Yttrium 90microsphere treatment Wright, C.L. *et al.* (2015)

The inverse problem

Objective function

The inverse problem

$$\Phi(\mathbf{u}) = \sum_{m=1}^M \Psi_m(A_m(u_m), f_m)$$

Data fit (how closely does our estimate fit the measurements?)

The inverse problem

$$\Phi(\mathbf{u}) = \sum_{m=1}^M \Psi_m(A_m(u_m), f_m) + \Gamma(\mathbf{u})$$

Prior (how closely does our estimate fit our prior knowledge of the solution?)

The inverse problem

$$\Phi(\mathbf{u}) = \sum_{m=1}^M \Psi_m(A_m(u_m), f_m) + \Gamma(\mathbf{u})$$

$$\mathbf{u}^* = rgmin_{\mathbf{u}} \left\{ \Phi(\mathbf{u})
ight\}$$

The Priors

Smoothed directional Total Variation (single modality)

$$\Gamma_{m,dTV} = \gamma_m \sum_j \Lambda(\|D_{v,j}
abla u_m\|_2,\delta)$$

Smoothed directional Total Nuclear Variation (synergistic)

$$\Gamma_{dTNV} = \sum_j \sum_i \Lambda(s(\mathbf{J}_j)_i, \delta)$$

Methods – Parallel Level Sets

Methods – Parallel Level Sets

Methods – directional Total Variation

 $igg(1-rac{
abla v}{\|
abla v\|^2}
abla v^ opigg)
abla u$

 $D_v \nabla u$

Methods – directional Total Variation

$$igg(1-rac{
abla v}{\|
abla v\|^2}
abla v^ opigg)
abla u$$

 $D_v \nabla u$

Methods – directional Total Variation

$$\left\| \left(1 - rac{
abla v}{\|
abla v\|^2}
abla v^ op
ight)
abla u
ight\|_2^2$$

$$\|D_v \nabla u\|_2$$

Methods – Total Nuclear Variation

- Convex envelope of rank
 function
- Trying to make the rows/columns the same (or zero)

Methods – Total Nuclear Variation

- Convex envelope of rank
 function
- Trying to make the rows/columns the same (or zero)

Methods – The Priors

Original

$$dTV(u) = \|D_v
abla u\|_2$$

$$TNV(u) = \sum_i s_i(J(
abla u_1,
abla u_2))$$

* s(J) = singular value of matrix J

Methods – The Priors

Original

Combine

$$dTV(u) = \|D_v
abla u\|_2$$
 $TNV(u) = \sum_i s_i (J(
abla u_1,
abla u_2))$
 $dTNV(u) = \sum_i s_i (J(D_v
abla u_1, D_v
abla u_2))$

ì

* s(J) = singular value of matrix J

Methods – The Priors

s(J) = singular value of matrix J

Data

NEMA phantom

- 6 hot spheres (11-37)mm diameter
- Total Activity for all spheres 187±4MBq
- Cold water background
- Mediso Trio Anyscan triple-modality scanner
 - SPECT:
 - 120 60s projections
 - Energy window (75-225)keV
 - MLEGP collimator
 - 54.5cm axial FoV
 - **PET**:
 - 60 minute scan
 - 38 ring, 15cm axial FoV

Methods – Setup

Reconstruction setup

- Scatter:
 - PET: Mediso vendor scatter
 - SPECT SIMIND simulation of smoothed 10 epoch 12 subset OSEM recon.
- Forward Model:
 - STIR/ParallelProj PET projector
 - STIR SPECTUB
 - + Resolution modelling
- Reconstructed with modified BSREM
 - Initial stepsize = 2
 - Relaxation parameter = 0.05
 - 12 subsets of PET/SPECT
 - 50 epochs reconstruction
 - $\alpha \beta$ shown in table
 - Compared to dTNV reconstructions to dTV reconstructions with same α β values

α	β
0.0	0.0
32.0	0.0625
64.0	0.125
96.0	0.25
128.0	0.5
192.0	0.75
256.0	1.0
512.0	2.0

 $\Gamma_{dTNV} = \sum_{j} \sum_{i} \Lambda \left(s \left(egin{bmatrix} lpha (D_{v,j}
abla u_{1,j})^{ op} \ eta (D_{v,j}
abla u_{2,i})^{ op} \end{bmatrix}
ight)
ight)$

Results - Visual

 $\alpha = 32, \beta = 0.0625$

 $\alpha = 512, \beta = 0.0625$

 $\alpha = 512, \beta = 2$

 $\alpha = 32, \beta = 2$

Results - Visual

 $\alpha = 32, \beta = 0.0625$

 $\alpha = 512, \beta = 0.0625$

 $\alpha = 512, \mu = 2$

 $\alpha = 32, \beta = 2$

Results - Visual

 $\alpha = 32, \beta = 0.0625$

 $\alpha = 512, \beta = 0.0625$

 $\alpha = 512, \beta = 2$

 $\alpha = 32, \beta = 2$

Evaluation

- Recovery versus noise:
 - Recovery Coefficient:

$$RC = rac{\mu_{ ext{sphere}}}{E}$$

- Coefficient of Variation (Cov): $CoV = rac{\sigma_{ ext{inner}}}{\mu_{ ext{inner}}}$
- Reconstruction accuracy:
 - Normalised root mean squared error (NRMSE):

$$NRMSE = rac{\sqrt{\sum_j (u_j - w_j)^2}}{E}$$

37 mm Sphere

37 mm Sphere

37 mm Sphere

17 mm Sphere

17 mm Sphere

17 mm Sphere

10 mm Sphere

13 mm Sphere

10 mm Sphere

PET

SPECT

What can we take away?

PET:

- Synergy increased RC, reduced variance for NEMA spheres.
- Synergy decreased NRMSE

SPECT:

- Synergy has potential to increase RC at the expense of CoV
- Synergy decreased NRMSE

What's Next?

More penalisation values:

- Improved RC for smaller SPECT features with higher alpha?
- How much can we increase alpha/beta before we decrease NRMSE?

More data:

- Anthropomorphic phantom data with liver compartments & tumour
- Patient data with Y-90 microspheres

More priors:

- How does this prior compare to other synergistic priors / methods?
- Modalities have very different features can modality-specific priors in addition to joint priors further improve reconstruction?

Acknowledgements

Special Thanks To: •Daniel, Kris, and Simon

• For their invaluable help and support

•The Team at NPL

• For the phantom measurements

Funding:

This work was supported in part by NPL through the National Measurement System of the UK Department for Science, Innovation and Technology.
Software used in this project is maintained by CCP SyneRBI (EPSRC grant EP/T026693/1) and CCPi (EPSRC grant (EP/T026677/1).
EPSRC studentship 21icas0856.

Any Questions?

References

- Ahmadzadehfar, Ahmadzadehfar, H., Biersack, H.-J., Ezziddin, S. 2010, 'Radioembolization of liver tumors with Yttrium-90 microspheres', Seminars in Nuclear Medicine, 40(2), 105-121.
- Holt, K.M. (2014). Total Nuclear Variation and Jacobian Extensions of Total Variation for Vector Fields. *IEEE Transactions on Image Processing*, 23(9), pp.3975–3989. doi:https://doi.org/10.1109/tip.2014.2332397.
- Lewis, AS. 1996, 'Derivatives of spectral functions', Mathematics of Operations Research, 21(3), 513-768.
- Ehrhardt, MJ., Thielemans, K., Pizarro, L., Atkinson, D., Ourselin, S., Hutton, BF., Arridge, SR. 2016, Joint Reconstruction of PET-MRI by exploiting Structural Similarity'. Inverse Problems 31 (2015), p. 015001.
- Ahn, S., Fessler, JA. 2003, 'Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms', IEEE Transactions on Medical Imaging, 22(5), 613-626
- Thielemans, K., Tsoumpas, C., Mustafovic, S., Beisel, T., Aguiar, P., Dikaios, N., Jacobson, MW. 2012, 'STIR: Software for Tomographic Image Reconstruction Release 2', Physics in Medicine and Biology, 57(21), 867-883.
- G. Schramm, K. Thielemans: "PARALLELPROJ An open-source framework for fast calculation of projections in tomography", Front. Nucl. Med., Volume 3 - 2023, doi: 10.3389/fnume.2023.1324562
- Ljungberg, M., Strand, SE., King, MA. 2012, 'Monte Carlo Calculations in Nuclear Medicine: Applications in Diagnostic Imaging', 2012, CRC Press.

Images:

Wright, C.L., Zhang, J., Tweedle, M.F., Knopp, M.V. and Hall, N.C. (2015). Theranostic Imaging of Yttrium-90. *BioMed Research International*, 2015, pp.1–11. doi:https://doi.org/10.1155/2015/481279.

Directional Total Nuclear Variation

 $egin{aligned} \Gamma_{dTNV} &= \sum_j \sum_i \Lambda(s(\mathbf{J}_j)_i, \delta) \ \mathbf{J}_j &= egin{bmatrix} lpha(D_{v,j}
abla u_{1,j})^{ op} \ eta(D_{v,j}
abla u_{2,j})^{ op} \end{bmatrix} \end{aligned}$

$$D_{v,j} = \mathbf{1} - rac{
abla v_j}{|
abla v_j|^2 + \eta^2} (
abla v_j)^ op$$

$$\Lambda(s;\delta) = \delta\left(rac{|s|}{\delta} - \ln\left(1 + rac{|s|}{\delta}
ight)
ight)$$

dTNV is sum of the smoothed singular values of the Jacobian Matrix

Jacobian Matrix is the weighted & stacked directional gradients of the images

Directional gradient is an anatomically weighted finite difference operator

Smoothed by applying the Fair potential function

Directional Total Variation

$$\Gamma_{m,dTV} = \gamma_m \sum_j \Lambda(\|D_{v,j}
abla u_m\|_2,\delta)$$

dTV is the smoothed I2 norm of the vector of gradient images

$$\gamma_m = lpha ~~{
m or}~~eta$$

$$D_{v,j} = \mathbf{1} - rac{
abla v_j}{|
abla v_j|^2 + \eta^2} (
abla v_j)^ op$$

$$\Lambda(s;\delta) = \delta\left(rac{|s|}{\delta} - \ln\left(1 + rac{|s|}{\delta}
ight)
ight)$$

Directional gradient is an anatomically weighted finite difference operator

Smoothed by applying the Fair potential function

Additional Slides

28 mm Sphere

21 mm Sphere

13 mm Sphere

