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Iterative TOF PET reconstruction with non-smooth priors

forward model

TOF PET fwd projector

TOF contamination sinogram

negative Poisson logL non-smooth prior
e.g. TV, GTV, DTV

Challenges
1. standard gradient-based methods cannot be applied if R is non-smooth

2. computation of complete TOF forward model is slow (20s … several minutes)

3. TOF data sinograms are huge
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Stochastic Primal-Dual Hybrid Gradient (SPDHG)

M. J. Ehrhardt, P. Markiewicz, and C. B. Schönlieb. “Faster PET reconstruction with non-smooth priors by randomization and preconditioning”, PMB 2019
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SPDHG - a closer look

M. J. Ehrhardt, P. Markiewicz, and C. B. Schönlieb. “Faster PET reconstruction with non-smooth priors by randomization and preconditioning”, PMB 2019

PROS
• guaranteed convergence (“almost surely”)
• huge number of subsets possible

→ “reasonable” convergence after
      e.g. 10 it. / 252 ss.

• applicable to many convex priors
(TV, DTV, GTV ...) – also non-smooth

CONS
• only works in sinogram space (binned data)
• need to store 2nd complete (TOF)

sinogram during iterations (y)
→ not efficient for sparse and huge TOF data
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Sparsity of TOF PET sinograms

emission sinogram, 80s liver bed position

323 MBq [18F]FDG, 70min p.i., 5.107 prompt counts

4 ring GE Discovery DMI (400ps TOF FWHM, 169ps TOF bin width)

sinogram dim. (425, 272, 1261, 29) → 109 bins

60% empty bins

95% empty bins

98% empty bins

• modern TOF emission sinograms are huge, 
but very sparse

• sparsity ~ 1/(n. TOF bins) ~ 1/(TOF resolution)
→ further increase of sparsity in future 
with better TOF resolution

• reconstruction in “sinogram/histogram mode”
very inefficient 
→ sparse sinogram or listmode processing
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Reducing the memory requirements of SPDHG
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A better initialization → no need for empty data bins during iterations

Schramm & Holler “Fast and memory-efficient reconstruction of sparse TOF PET data with non-smooth priors”, 
Proceedings of the 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, https://arxiv.org/abs/2110.04143



9

“Listmode” SPDHG

accelerate TOF fwd/back projections  
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LM-SPDHG

Schramm and Holler: “Fast and memory-efficient reconstruction of sparse Poisson 
data in listmode with non-smooth priors with application to time-of-flight PET”
Phys Med Biol 2022
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LM-SPDHG

listmode fwd / back projections
instead of sinogram projections

Schramm and Holler: “Fast and memory-efficient reconstruction of sparse Poisson 
data in listmode with non-smooth priors with application to time-of-flight PET”
Phys Med Biol 2022
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LM-SPDHG

event num det 1 det 2 TOF 
bin

μe

1 1 3 1 2

2 1 4 1 1

3 2 4 2 1

4 1 3 2 1

5 1 3 1 2

Time to calc μe   0.23s (1e7 counts)
(single V100 GPU) 2.76s (1e8 counts)

Schramm and Holler: “Fast and memory-efficient reconstruction of sparse Poisson 
data in listmode with non-smooth priors with application to time-of-flight PET”
Phys Med Biol 2022
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Listmode projectors are (almost always) faster

Timings (s) for TOF listmode fwd+back projectionTiming (s) for TOF sinogram fwd+back projection
(1 out of 28 subsets, GE 4 ring DMI, 400ps TOF)

28*0.2s = 5.6s needed for complete
sino fwd + back projection

4e7 events (80s liver scan)
can be fwd + back projected in 0.6s
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Memory requirements of SPDHG vs LM-SPDHG

algorithm 5e8 prompts 7e7 prompts 1e7 prompts

SPDHG 60.0 GB 60.0 GB 60.0 GB

LM-SPDHG 12.5 GB 2.1 GB 0.8 GB

GE DMI-4 (20cm axial FOV) geometry – using “span 1” TOF sinograms
400ps TOF resolution, 29 TOF bins
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Methods
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Methods

Convergence monitored via

• reconstruction of simulated 2D TOF PET data from brain phantom using
PDHG (10000 iterations) → reference solution (x*)
SPDHG (100 iterations / diff. num. subsets)
LM-SPDHG (100 iterations / diff. num. subsets)
LM-EMTV (100 iterations / diff. num. subsets)

• different count levels, prior strength and two priors: TV and DTV (directional TV)

• 2D/3D data simulation including attenuation, smooth contamination, finite resolution

• reconstruction of real 3D TOF data from GE DMI (NEMA IQ phantom)
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Results
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LM SPDHG converges as fast as sinogram SPDHG
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LM SPDHG vs EM-TV in 2D simulations

Sawatzky et al. “Accurate EM-TV algorithm in PET with low SNR”, IEEE NSS/MIC 2008
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Speed of Convergence vs Number of Subsets in 2D simulations
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Reconstructions of NEMA IQ phantom scan
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Discussion and Conclusion
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Discussion and Conclusion

• convergence speed LM-SPDHG very similar to (sinogram) SPDHG

• for “normal count” acquisitions @ 400ps systems:
à LM-SPDHG much faster and memory efficient than SPDHG

• all PDHG versions are non-monotonic
à stopping (very) early not recommended   

• behaviour of all PDHG-variants in early iterations very sensitive to:
- initialization of primal and dual variable
- step size ratio (“S vs T”) 

Discussion
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Discussion and Conclusion

Impact of the step size ratio on (LM-S)PDHG
ᵞ = 0.03 / max(img) ᵞ = 3 / max(img) ᵞ = 300 / max(img)

20 it / 56 ss
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Impact of the step size ratio on (LM-S)PDHG
ᵞ = 0.03 / max(img) ᵞ = 3 / max(img) ᵞ = 300 / max(img)

200 it / 56 ss
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Discussion and Conclusion

Try LM SPDHG yourself

https://parallelproj.readthedocs.io/en/stable/auto_examples/06_listmode_algorithms/03_lm_spdhg.html#listmode-spdhg



27

Discussion and Conclusion
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Discussion and Conclusion
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Discussion and Conclusion

ᵞ = 0.03 / max(img)

10000 it / 56 ss


