

Fast and memory-efficient reconstruction of sparse Poisson data in listmode with non-smooth priors with application to time-of-flight PET

¹Georg Schramm, ²Martin Holler

¹Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, Belgium ²Institute of Mathematics and Scientific Computing, University of Graz, Austria

georg.schramm@kuleuven.be

KU LEUVEN

The authors have no financial interests to disclose.

Physics in Medicine & Biology

PAPER

The main results of this talk are published in

Fast and memory-efficient reconstruction of sparse Poisson data in listmode with non-smooth priors with application to time-of-flight PET Georg Schramm¹ and Martin Holler^{3,2} Published 27 July 2022 · © 2022 Institute of Physics and Engineering in Medicine Physics in Medicine & Biology, Volume 67, Number 15 Citation Georg Schramm and Martin Holler 2022 Phys. Med. Biol. 67 155020 DOI 10.1088/1361-6560/ac71f1

Iterative TOF PET reconstruction with non-smooth priors

forward model

$$\operatorname{argmin}_{x \ge 0} \sum_{i} \overline{y}_{i}(x) - d_{i} \log \overline{y}_{i}(x) + \beta \operatorname{R}(\nabla x)$$

 $\bar{y} = Px + s$

negative Poisson logL

non-smooth prior e.g. TV, GTV, DTV

TOF PET fwd projector TOF contamination sinogram

Challenges

- 1. standard gradient-based methods cannot be applied if R is non-smooth
- 2. computation of complete TOF forward model is slow (20s ... several minutes)
- 3. TOF data sinograms are huge

Stochastic Primal-Dual Hybrid Gradient (SPDHG)

1: Initialize $x(=0), y(=0), (S_i)_i, T, (p_i)_i$ 2: $\overline{z} = z = P^T y$ 3: repeat $x = proj_{>0}(x - T\overline{z})$ 4: Select $i \in \{1, \ldots, n+1\}$ randomly according to $(p_i)_i$ 5: if $i \le n$ then 6: $y_i^+ \leftarrow \operatorname{prox}_{D_i^*}^{S_i}(y_i + S_i(P_ix + s_i))$ 7: $\delta z \leftarrow \mathsf{P}_{i}^{\mathsf{T}}(\mathsf{y}_{i}^{+} - \mathsf{y}_{i})$ 8: else 9: $y_i^+ \leftarrow prox_{R^*}^{S_i}(y_i + S_i \nabla x)$ 10: $\delta z \leftarrow \nabla^{\mathsf{T}}(y_{i}^{+} - y_{i})$ 11: end if 12: $y_i \leftarrow y_i^+$ 13: 14: $z \leftarrow z + \delta z$ 15: $\overline{z} \leftarrow z + (\delta z/p_i)$ 16: until stopping criterion fulfilled 17: **return** x

SPDHG - a closer look

1: Initialize
$$x(=0), y(=0), (S_i)_i, T, (p_i)_i$$
,
2: $\overline{z} = z = P^T y$

3: repeat

 $x = proj_{>0}(x - T\overline{z})$ 4: Select $i \in \{1, ..., n+1\}$ randomly according to $(p_i)_i$ 5: **if** i ≤ n **then** 6: $y_i^+ \leftarrow \operatorname{prox}_{D_i^*}^{S_i}(y_i + S_i(P_i x + s_i))$ 7: $\delta z \leftarrow \mathsf{P}_{i}^{\mathsf{T}}(\mathsf{y}_{i}^{+} - \mathsf{y}_{i})$ 8: else 9: $y_i^+ \leftarrow prox_{R^*}^{S_i}(y_i + S_i \nabla x)$ 10: $\delta z \leftarrow \nabla^{\mathsf{T}}(y_{i}^{+} - y_{i})$ 11: end if 12: $y_i \leftarrow y_i^+$ 13: $z \leftarrow z + \delta z$ 14: 15: $\overline{z} \leftarrow z + (\delta z/p_i)$ 16: until stopping criterion fulfilled 17: **return** ×

PROS

- guaranteed convergence ("almost surely")
- huge number of subsets possible
 - → "reasonable" convergence after e.g. 10 it. / 252 ss.
- applicable to many convex priors (TV, DTV, GTV ...) – also non-smooth

<u>CONS</u>

- only works in sinogram space (binned data)
- need to store 2nd complete (TOF) sinogram during iterations (y)

→ not efficient for sparse and huge TOF data

Sparsity of TOF PET sinograms

- modern TOF emission sinograms are huge, but very sparse
- sparsity ~ 1/(n. TOF bins) ~ 1/(TOF resolution)
 → further increase of sparsity in future
 with better TOF resolution
- reconstruction in "sinogram/histogram mode" very inefficient
 → sparse sinogram or listmode processing

emission sinogram, 80s liver bed position 323 MBq [¹⁸F]FDG, 70min p.i., $5 \cdot 10^7$ prompt counts 4 ring GE Discovery DMI (400ps TOF FWHM, 169ps TOF bin width) sinogram dim. (425, 272, 1261, 29) $\rightarrow 10^9$ bins

Reducing the memory requirements of SPDHG

A better initialization → no need for empty data bins during iterations

1: Initialize
$$x(=0)$$
, $y(d \neq 0)$ $(S_i)_i$, T , $(p_i)_i$,
2: $\overline{z} = z = P^T y$
3: repeat
4: $x = \text{proj}_{\geq 0}(x - T\overline{z})$
5: Select $i \in \{1, ..., n+1\}$ randomly according to $(p_i)_i$
6: if $i \leq n$ then
7: $y_i^+ \leftarrow \text{prox}_{D_i^*}^{S_i}(y_i + S_i(P_ix + s_i))$
8: $\delta z \leftarrow P_i^T(y_i^+ - y_i)$
9: else
10: $y_i^+ \leftarrow \text{prox}_{R^*}^{S_i}(y_i + S_i\nabla x)$
11: $\delta z \leftarrow \nabla^T(y_i^+ - y_i)$
12: end if
13: $y_i \leftarrow y_i^+$
14: $z \leftarrow z + \delta z$
15: $\overline{z} \leftarrow z + (\delta z/p_i)$
16: until stopping criterion fulfilled
17: return x

$$(\text{prox}_{D_{j}^{*}}^{S_{i}}(y))_{j} = \frac{1}{2} \left(y_{j} + 1 - \sqrt{(y_{j} - 1)^{2} + 4(S_{i})_{j}d_{j}} \right)$$

Schramm & Holler "Fast and memory-efficient reconstruction of sparse TOF PET data with non-smooth priors",

Proceedings of the 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, https://arxiv.org/abs/2110.04143

"Listmode" SPDHG

accelerate TOF fwd/back projections

LM-SPDHG

Schramm and Holler: *"Fast and memory-efficient reconstruction of sparse Poisson data in listmode with non-smooth priors with application to time-of-flight PET"* **Phys Med Biol 2022**

1: Input event list N 2: **Calculate** event counts μ_e for each e in N 3: Split event list N into m sublists N_i 4: Initialize m sub lists I_{Ni} with 0s 5: Initialize $x, (S_i)_i, T, (p_i)_i, g$ 6: **Preprocessing** $\overline{z} = z = P^T (d \neq 0)$ 7: repeat 8: $x = \operatorname{proj}_{>0}(x - T\overline{z})$ 9: Select $i \in \{1, \dots, m+1\}$ randomly accord. to $(p_i)_i$ 10: if $i \le m$ then $11: \qquad I_{N_i}^+ \gets \operatorname{prox}_{D^*}^{S_i} \left(I_{N_i} + S_i \left(\mathsf{P}_{N_i}^{\mathsf{LM}} x + s_{N_i} \right) \right)$ 12: $\delta z \leftarrow \mathsf{P}_{\mathsf{N}_{i}}^{\mathsf{LM}\mathsf{T}}\left(\frac{\mathsf{I}_{\mathsf{N}_{i}}^{+}-\mathsf{I}_{\mathsf{N}_{i}}}{\mu_{\mathsf{N}_{i}}}\right)$ 13: $I_{N_i} \leftarrow I_{N_i}^+$ 14: else 15: $g^+ \leftarrow \operatorname{prox}_{||\cdot||^*}^{S_i}(g + S_i \nabla x)$ $\begin{array}{ll} 16: & \delta z \leftarrow \nabla^{\mathsf{T}} \left(\mathbf{g}^{+} - \mathbf{g} \right) \\ 17: & \mathbf{g} \leftarrow \mathbf{g}^{+} \end{array}$ 18: end if 19: $z \leftarrow z + \delta z$ 20: $\overline{z} \leftarrow z + (\delta z/p_i)$ 21: **until** stopping criterion fulfilled 22: return x

LM-SPDHG

listmode fwd / back projections **instead of sinogram** projections

$$(\text{prox}_{D_{j}^{*}}^{S_{i}}(y))_{j} = \frac{1}{2} \left(y_{j} + 1 - \sqrt{(y_{j} - 1)^{2} + 4(S_{i})_{j}\mu_{j}} \right)$$

Schramm and Holler: *"Fast and memory-efficient reconstruction of sparse Poisson data in listmode with non-smooth priors with application to time-of-flight PET"* **Phys Med Biol 2022**

1: Input event list N 2: **Calculate** event counts μ_e for each e in N 3: Split event list N into m sublists N_i 4: **Initialize** m sub lists I_N with 0s 5: Initialize $x, (S_i)_i, T, (p_i)_i, g$ 6: **Preprocessing** $\overline{z} = z = P^{T}(d \neq 0)$ 7: repeat 8: $x = \text{proj}_{>0}(x - T\overline{z})$ Select $i \in \{1, \dots, m+1\}$ randomly accord. to $(p_i)_i$ 9: 10: if $i \leq m$ then $\mathsf{I}_{\mathsf{N}_{i}}^{+} \gets \mathrm{prox}_{\mathsf{D}^{*}}^{\mathsf{S}_{i}} \left(\mathsf{I}_{\mathsf{N}_{i}} \!+\! \mathsf{S}_{i} \left(\!\!\left|\mathsf{P}_{\mathsf{N}_{i}}^{\mathsf{LM}} \!\times\! +\! \mathsf{s}_{\mathsf{N}_{i}}\right.\!\!\right)\right)$ 11: $\delta \mathsf{z} \leftarrow \mathsf{P}_{\mathsf{N}_{i}}^{\mathsf{LMT}}\left(rac{\mathsf{I}_{\mathsf{N}_{i}}^{+}-\mathsf{I}_{\mathsf{N}_{i}}}{\mu_{\mathsf{N}_{i}}}
ight)$ 12: $I_{N_i} \leftarrow I_{N_i}^+$ 13: 14: else 15: $g^+ \leftarrow \operatorname{prox}_{||\cdot||^*}^{S_i} (g + S_i \nabla x)$ 16: $\delta z \leftarrow \nabla^T (g^+ - g)$ 17: $g \leftarrow g^+$ 18: end if 19: $z \leftarrow z + \delta z$ 20: $\overline{z} \leftarrow z + (\delta z/p_i)$ 21: until stopping criterion fulfilled 22: return x

LM-SPDHG

event num	det 1	det 2	TOF bin
1	1	3	1
2	1	4	1
3	2	4	2
4	1	3	2
5	1	3	1

Time to calc µ_e (single V100 GPU)

0.23s (1e7 counts) 2.76s (1e8 counts)

Schramm and Holler: *"Fast and memory-efficient reconstruction of sparse Poisson data in listmode with non-smooth priors with application to time-of-flight PET"* **Phys Med Biol 2022**

1: **Input** event list N 2: **Calculate** event counts μ_e for each e in N 3: Split event list N into m sublists N_i 4: Initialize m sub lists I_{Ni} with 0s 5: Initialize $x, (S_i)_i, T, (p_i)_i, g$ 6: **Preprocessing** $\overline{z} = z = P^{T}(d \neq 0)$ 7: repeat 8: $x = \operatorname{proj}_{>0}(x - T\overline{z})$ 9: Select $i \in \{1, \dots, m+1\}$ randomly accord. to $(p_i)_i$ 10: **if** $i \leq m$ **then** 11: $I_{N_i}^+ \leftarrow \operatorname{prox}_{D^*}^{S_i} \left(I_{N_i} + S_i \left(P_{N_i}^{LM} x + s_{N_i} \right) \right)$ 12: $\delta z \leftarrow \mathsf{P}_{\mathsf{N}_{i}}^{\mathsf{LMT}}\left(\frac{\mathsf{I}_{\mathsf{N}_{i}}^{+}-\mathsf{I}_{\mathsf{N}_{i}}}{\mu_{\mathsf{N}_{i}}}\right)$ 13: $I_{N_i} \leftarrow I_{N_i}^+$ 14: else 15: $g^+ \leftarrow \operatorname{prox}_{||.||^*}^{S_i} (g + S_i \nabla x)$ 16: $\delta z \leftarrow \nabla^{\mathsf{T}} (g^+ - g)$ 17: $g \leftarrow g^+$ 18: end if 19: $z \leftarrow z + \delta z$ 20: $\overline{z} \leftarrow z + (\delta z/p_i)$ 21: **until** stopping criterion fulfilled 22: return x

Listmode projectors are (almost always) faster

PARALLELPROJ—an open-source framework for fast calculation of projections in tomography

Georg Schramm^{1*} Kris Thielemans^{2,3}

Timing (s) for TOF sinogram fwd+back projection (1 out of 28 subsets, GE 4 ring DMI, 400ps TOF)

Timings (s) for TOF listmode fwd+back projection

4e7 events (80s liver scan) can be fwd + back projected in **0.6s**

Memory requirements of SPDHG vs LM-SPDHG

algorithm	5e8 prompts	7e7 prompts	1e7 prompts
SPDHG	60.0 GB	60.0 GB	60.0 GB
LM-SPDHG	12.5 GB	2.1 GB	0.8 GB

GE DMI-4 (20cm axial FOV) geometry – using "span 1" TOF sinograms 400ps TOF resolution, 29 TOF bins

Methods

16

Methods

- reconstruction of simulated 2D TOF PET data from brain phantom using PDHG (10000 iterations) → reference solution (x*)
 SPDHG (100 iterations / diff. num. subsets)
 LM-SPDHG (100 iterations / diff. num. subsets)
 LM-EMTV (100 iterations / diff. num. subsets)
- different count levels, prior strength and two priors: TV and DTV (directional TV)
- 2D/3D data simulation including attenuation, smooth contamination, finite resolution
- reconstruction of real 3D TOF data from GE DMI (NEMA IQ phantom)

Convergence monitored via

relative cost
$$c_{rel}(x) = \frac{c(x) - c(x^*)}{c(x^0) - c(x^*)}$$
 $PSNR = 20 \log \frac{|x^*|_{\infty}}{MSE(x, x^*)}$

ground truth

Results

LM SPDHG converges as fast as sinogram SPDHG

(a) 3e5 true (5e5 prompt) counts, TV prior, $\beta = 0.03$

LM SPDHG vs EM-TV in 2D simulations

(a) 3e5 true (5e5 prompt) counts, TV prior, $\beta = 0.03$

Speed of Convergence vs Number of Subsets in 2D simulations

(a) 3e5 true (5e5 prompt) counts, TV prior, $\beta = 0.03$

Reconstructions of NEMA IQ phantom scan

Discussion and Conclusion

Discussion

- convergence speed LM-SPDHG very similar to (sinogram) SPDHG
- for "normal count" acquisitions @ 400ps systems:
 → LM-SPDHG much faster and memory efficient than SPDHG
- all PDHG versions are non-monotonic
 → stopping (very) early not recommended
- behaviour of all PDHG-variants in early iterations very sensitive to:
 initialization of primal and dual variable
 - step size ratio ("S vs T")

Impact of the step size ratio on (LM-S)PDHG

Impact of the step size ratio on (LM-S)PDHG

Try LM SPDHG yourself

