Time-of-Flight Requirements to Mitigate Blurring Induced by Annihilation Photon Acollinearity

¹Sherbrooke Molecular Imaging Center of CRCHUS &, Department of Nuclear Medicine and Radiobiology Université de Sherbrooke, CA ²Institute for Instrumentation in Molecular Imaging, i3M CSIC-UPV, Valencia, ES ³Department of Computer Science, Université de Sherbrooke, CA ⁴IR&T, CA

22 May 2024

Theoretical spatial resolution limit at the center of a PET camera [Moses, 2011]

$${\it R_{\sf spatial}} \geq lpha \sqrt{{\it R_p^2 + R_a^2 + R_l^2 + R_{\sf Det}^2}$$

where ...

Theoretical spatial resolution limit at the center of a PET camera [Moses, 2011]

$$R_{
m spatial} \geq lpha \sqrt{R_p^2 + R_a^2 + R_l^2 + R_{
m Det}^2}$$

where ...

- R_p: Positron range
- R_a: Annihilation photons acollinearity (APA)

Inspired from www.depts.washington.edu/imreslab

Theoretical spatial resolution limit at the center of a PET camera [Moses, 2011]

$$R_{
m spatial} \ge lpha \sqrt{R_{
m p}^2 + R_{
m a}^2 + R_{
m I}^2 + R_{
m Det}^2}$$

where ...

- R_p: Positron range
- *R_a*: Annihilation photons acollinearity (APA)
- *R*_l: Detectors coupling
- *R*_{Det}: Detectors width (FWHM: *d*/2)

Detection module schematic

Theoretical spatial resolution limit at the center of a PET camera [Moses, 2011]

$$R_{ ext{spatial}} \geq lpha \sqrt{R_{p}^{2} + R_{a}^{2} + R_{I}^{2} + R_{ ext{Det}}^{2}}$$

where ...

- R_p: Positron range
- *R_a*: Annihilation photons acollinearity (APA)
- R_l: Detectors coupling
- *R*_{Det}: Detectors width (FWHM: d/2)

Theoretical spatial resolution limit at the center of a PET camera [Moses, 2011]

$$R_{ ext{spatial}} \ge lpha \sqrt{R_{
ho}^2 + R_a^2 + R_I^2 + R_{ ext{Det}}^2}$$

where ...

- R_p: Positron range
- R_a: Annihilation photons acollinearity (APA)
- R_l: Detectors coupling
- *R*_{Det}: Detectors width (FWHM: *d*/2)

Ultimate "realistic" spatial resolution for a whole-body scanner: 2.49 mm FWHM

- $d = 3.0 \rightarrow 1.5 \text{ mm FWHM}$
- APA of 0.55° FWHM and an 80 cm diameter scanner \rightarrow 1.9 mm FWHM

Mitigating the effect of detector size using ultrafast TOF

Spatial blur > TOF blur

Hot Spots simulated with 13 ps FWHM TOF [Toussaint et al., 2020b]

Results

Mitigating the effect of detector size using ultrafast TOF

Hot Spots simulated with 13 ps FWHM TOF [Toussaint et al., 2020b]

Requirements:

 $\bullet\,$ TOF FWHM $\approx\,$ detector size

Results

Mitigating the effect of detector size using ultrafast TOF

Hot Spots simulated with 13 ps FWHM TOF [Toussaint et al., 2020b]

Requirements:

- TOF FWHM \approx detector size
- Coincidence event statistics (Inverse problem)

Ultrafast TOF on APA changes the shape of its blur

Ultrafast TOF on APA changes the shape of its blur

Direct image formation with perfect TOF resolution [Toussaint et al., 2020a]

Ultrafast TOF on APA changes the shape of its blur

Direct image formation with perfect TOF resolution [Toussaint et al., 2020a]

Requirements:

- Only with \leq 13 ps?
- Achievable with realistic detector size?

Ultrahigh TOF resolution: are we there yet?

Ultrahigh TOF resolution: are we there yet?

• 2033: 10 ps

Ultrahigh TOF resolution: are we there yet?

Examples of progress in coincidence time resolution:

- 30 ps FWHM (3.2 mm deep; lead glass; MCP-PMT [Ota et al., 2019])
- 123 ps FWHM (2x2x3 mm³; BGO; FBK SiPM [Gundacker et al., 2023])
- 95 ps FWHM (3×3×19 mm³; LYSO Ce,Ca; HF readout [Nadig et al., 2023])

 Lower bound of the requirements to mitigate the blur induced by APA for whole-/total-body PET scanners

- Lower bound of the requirements to mitigate the blur induced by APA for whole-/total-body PET scanners
 - TOF resolution
 - Coincidence event statistics

- Lower bound of the requirements to mitigate the blur induced by APA for whole-/total-body PET scanners
 - TOF resolution
 - Coincidence event statistics
- Estimate the potential gain in spatial resolution

- Lower bound of the requirements to **mitigate** the blur induced by **APA** for whole-/total-body PET scanners
 - TOF resolution
 - Coincidence event statistics
- Estimate the potential gain in spatial resolution
 - Is it worth it? [Schaart et al., 2020]

GATE 9.2 simulations [Sarrut et al., 2022]

- Scanner diameter: 81 cm (Whole-body PET scanner)
- Detectors size: 2 mm wide

GATE 9.2 simulations [Sarrut et al., 2022]

- Scanner diameter: 81 cm (Whole-body PET scanner)
- Detectors size: 2 mm wide
- Detectors placement (2D): regular 40-sided polygon, 32 detectors per side

GATE 9.2 simulations [Sarrut et al., 2022]

- Scanner diameter: 81 cm (Whole-body PET scanner)
- Detectors size: 2 mm wide
- Detectors placement (2D): regular 40-sided polygon, 32 detectors per side
- Detectors depth: 0.1 mm (Reduce DOI-induced timing bias)
- No decoding error

TOF resolutions:

 \approx 13, 26, 65 and 130 ps FWHM (i.e., 2, 4, 5, 20 mm FWHM)

TOF resolutions:

 \approx 13, 26, 65 and 130 ps FWHM (i.e., 2, 4, 5, 20 mm FWHM)

Coincidence event statistics

- "Typical" acquisition (*FullStat*)
 - Based on the sensitivity of the UHR scanner [Doyon et al., 2023] and converted to the simulated phantom volume

TOF resolutions:

 \approx 13, 26, 65 and 130 ps FWHM (i.e., 2, 4, 5, 20 mm FWHM)

Coincidence event statistics

- "Typical" acquisition (*FullStat*)
 - Based on the sensitivity of the UHR scanner [Doyon et al., 2023] and converted to the simulated phantom volume
- Half of the "typical" acquisition (*HalfStat*)
- A tenth of the "typical" acquisition (1/10thStat)

basicTOR:

Back-to-back source with 0.55° FWHM APA [Shibuya et al., 2007]

basicTOR:

Back-to-back source with 0.55° FWHM APA [Shibuya et al., 2007]

- Expected APA blurring: 1.9 mm FWHM
- Theoretical spatial resolution limit: 2.2 mm FWHM

basicTOR:

Back-to-back source with 0.55° FWHM APA [Shibuya et al., 2007]

- Expected APA blurring: 1.9 mm FWHM
- Theoretical spatial resolution limit: 2.2 mm FWHM

obliqueTOR:

Idea:

• "Median" 3D TOR of the EXPLORER: 102 cm long [Badawi et al., 2019]

basicTOR:

Back-to-back source with 0.55° FWHM APA [Shibuya et al., 2007]

- Expected APA blurring: 1.9 mm FWHM
- Theoretical spatial resolution limit: 2.2 mm FWHM

obliqueTOR:

Idea:

• "Median" 3D TOR of the EXPLORER: 102 cm long [Badawi et al., 2019] Back-to-back source with 0.67° FWHM APA

basicTOR:

Back-to-back source with 0.55° FWHM APA [Shibuya et al., 2007]

- Expected APA blurring: 1.9 mm FWHM
- Theoretical spatial resolution limit: 2.2 mm FWHM

obliqueTOR:

Idea:

• "Median" 3D TOR of the EXPLORER: 102 cm long [Badawi et al., 2019] Back-to-back source with 0.67° FWHM APA

 $\bullet\,$ Equivalent to 0.55° FWHM APA for a $102\,cm$ long TOR

basicTOR:

Back-to-back source with 0.55° FWHM APA [Shibuya et al., 2007]

- Expected APA blurring: 1.9 mm FWHM
- Theoretical spatial resolution limit: 2.2 mm FWHM

obliqueTOR:

Idea:

• "Median" 3D TOR of the EXPLORER: 102 cm long [Badawi et al., 2019] Back-to-back source with 0.67° FWHM APA

- $\bullet\,$ Equivalent to 0.55° FWHM APA for a 102 cm long TOR
- Expected APA blurring: 2.4 mm FWHM
- Theoretical spatial resolution limit: 2.6 mm FWHM

Quantify spatial resolution gain

A Hot Spots phantom

Another Hot Spots phantom

Hot Spots phantoms parameter:

- Spots size: 1.0 mm to 3.0 mm with steps of 0.2 mm
- Number of coincidences for *FullStat*: \approx 7 M
- Activity distribution: spot-to-background ratio of 4:1

Quantify spatial resolution gain

A Hot Spots phantom

Reconstruction:

- Algorithm: TOF MLEM
- TOF discretization: uniform TOF bins and adapted to TOF resolution
- \bullet System matrix: highly accurate representation with 0.31 \times 0.31 mm^2 voxels
- Stopping criteria: minimize mean squared error with ground truth

Another Hot Spots phantom

Quantify spatial resolution gain

A Hot Spots phantom

Another Hot Spots phantom

Position of the line profiles

Spots resolvability:

- $\bullet\,$ Peak and valley estimation: Mean of a ROI 30% of the spot size
- Background mean was estimated and corrected prior to ratio evaluation
- Decision criterion: ≥90% valley-to-peaks ratio that satisfies the Rayleigh resolution criterion [Hallen et al., 2020]

In pratice? BigBrain with FDG-like distribution

BigBrain [Amunts et al., 2013]

In pratice?

BigBrain with FDG-like distribution

Acquisition:

- 128 replications of the 2D scanner axialy (256 mm axial FOV)
- $\approx\!\!13$, 26, 65 and 130 ps FWHM
- basicTOR vs obliqueTOR
- ≈ 100 M coincidences

BigBrain [Amunts et al., 2013]

In pratice?

BigBrain with FDG-like distribution

Acquisition:

- 128 replications of the 2D scanner axialy (256 mm axial FOV)
- $\approx\!\!13$, 26, 65 and 130 ps FWHM
- basicTOR vs obliqueTOR
- ≈ 100 M coincidences

Reconstruction:

- MLEM TOF using CASToR with continuous TOF [Merlin et al., 2018]
- Projector: 25 rays multi-Siddon
- $0.4 \times 0.4 \times 0.4 \text{ mm}^3$ voxels

BigBrain [Amunts et al., 2013]

Theoretical spatial resolution: 2.2 mm FWHM. APA: 1.9 mm FWHM.

Theoretical spatial resolution: 2.2 mm FWHM. APA: 1.9 mm FWHM.

Gains (all values are in FWHM):

• 13 ps TOF: 0.6-0.8 mm

Theoretical spatial resolution: 2.2 mm FWHM. APA: 1.9 mm FWHM.

Gains (all values are in FWHM):

- 13 ps TOF: 0.6-0.8 mm
- 26 ps TOF (i.e., $\approx 2 \times APA$): 0.4 mm even with 1/10thStat

Theoretical spatial resolution: 2.2 mm FWHM. APA: 1.9 mm FWHM.

Gains (all values are in FWHM):

- 13 ps TOF: 0.6-0.8 mm
- 26 ps TOF (i.e., $\approx 2 \times APA$): 0.4 mm even with 1/10thStat
- 65 ps TOF (i.e., \approx 5×APA): 0.6 mm with at least HalfStat

Theoretical spatial resolution: 2.6 mm FWHM. APA: 2.4 mm FWHM.

Theoretical spatial resolution: 2.6 mm FWHM. APA: 2.4 mm FWHM.

Gains (all values are in FWHM):

• 13 ps TOF: 0.8-1.0 mm

Theoretical spatial resolution: 2.6 mm FWHM. APA: 2.4 mm FWHM.

Gains (all values are in FWHM):

- 13 ps TOF: 0.8-1.0 mm
- 26 ps TOF (i.e., $\approx 1.7 \times APA$): 0.6 mm even with 1/10thStat

Theoretical spatial resolution: 2.6 mm FWHM. APA: 2.4 mm FWHM.

Gains (all values are in FWHM):

- 13 ps TOF: 0.8-1.0 mm
- 26 ps TOF (i.e., $\approx 1.7 \times APA$): 0.6 mm even with 1/10thStat
- 65 ps TOF (i.e., \approx 4×APA): 0.6 mm with at least HalfStat

BigBrain, *basicTOR*

Tranverse view. Same color-scale. Similar noise in the grey matter. *Theoretical* spatial resolution: 2.2 mm FWHM. APA: **1.9 mm FWHM**.

BigBrain, *basicTOR*

TOF: 65 ps, 12 it.

TOF: 26 ps, 10 it.

TOF: 13 ps, 6 it. Groundtruth ROI position Theoretical spatial resolution: 2.2 mm FWHM

BigBrain, obliqueTOR

TOF: 65 ps, 12 it.

TOF: 13 ps, 6 it.

Groundtruth

Tranverse view. Same color-scale. Similar noise in the grey matter. *Theoretical* spatial resolution: 2.6 mm FWHM. APA: **2.4 mm FWHM**.

Results

BigBrain, obliqueTOR

TOF: 65 ps, 12 it.

TOF: 26 ps, 8 it.

Carles Sta

TOF: 13 ps, 6 it. Groundtruth ROI position Theoretical spatial resolution: 2.6 mm FWHM

Main goal:

Investigate the **requirements** on TOF resolution and event statistics to **mitigate the APA**-induced blurring in the context of **whole-body and total-body PET** cameras

Highlights:

- Hot Spots phantom: gain achieved in all cases (0.4 to 1.0 mm FWHM)
- Greater gain with *obliqueTOR*

Highlights:

- Hot Spots phantom: gain achieved in all cases (0.4 to 1.0 mm FWHM)
 - 0.6 mm FWHM gain is possible with 65 ps FWHM TOF (\approx 5×APA)
- Greater gain with *obliqueTOR*

Highlights:

- Hot Spots phantom: gain achieved in all cases (0.4 to 1.0 mm FWHM)
 - 0.6 mm FWHM gain is possible with 65 ps FWHM TOF (\approx 5×APA)
- Greater gain with *obliqueTOR*
 - Potential to stabilize PET spatial resolution in the FOV

Highlights:

- Hot Spots phantom: gain achieved in all cases (0.4 to 1.0 mm FWHM)
 - 0.6 mm FWHM gain is possible with 65 ps FWHM TOF (\approx 5×APA)
- Greater gain with *obliqueTOR*
 - Potential to stabilize PET spatial resolution in the FOV

Future works:

• Larger detectors

Highlights:

- Hot Spots phantom: gain achieved in all cases (0.4 to 1.0 mm FWHM)
 - 0.6 mm FWHM gain is possible with 65 ps FWHM TOF (\approx 5×APA)
- Greater gain with *obliqueTOR*
 - Potential to stabilize PET spatial resolution in the FOV

Future works:

- Larger detectors
- Better 3D reconstructions (more iterations, better system matrix?)

Bibliography I

[Amunts et al., 2013] Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.-É., Bludau, S., Bazin, P.-L., Lewis, L. B., Oros-Peusquens, A.-M., et al. (2013). Bigbrain: an ultrahigh-resolution 3D human brain model. <u>Science</u>, 340(6139):1472–1475.

[Badawi et al., 2019] Badawi, R. D., Shi, H., Hu, P., Chen, S., Xu, T., Price, P. M., Ding, Y., Spencer, B. A., Nardo, L., Liu, W., et al. (2019). First human imaging studies with the EXPLORER total-body PET scanner. JNM, 60(3):299–303.

[Doyon et al., 2023] Doyon, V., Sarrhini, O., Loignon-Houle, F., Toussaint, M., Auger, E., Thibaudeau, C., Croteau, E., Lavallée, E., Dumulon-Perreault, V., Beaudoin, J.-F., Leroux, J.-D., Bouchard, J., Samson, A., Espagnet, R., Fontaine, R., and Lecomte, R. (2023). Microliter in vito brain pet imaging with the ultra-high resolution (uhr) scanner. In 2023 IEEE NSS MIC RTSD, pages 1–1.

[Gundacker et al., 2023] Gundacker, S., Borghi, G., Cherry, S. R., Gola, A., Lee, D., Merzi, S., Penna, M., Schulz, V., and Kwon, S. I. (2023). On timing-optimized sipms for cherenkov detection to boost low cost time-of-flight pet. Physics in Medicine & Biology, 68(16):165016.

[Hallen et al., 2020] Hallen, P., Schug, D., and Schulz, V. (2020). Comments on the NEMA NU 4-2008 standard on performance measurement of small animal positron emission tomographs. EJNMMI, 7(1):1-20.

[Merlin et al., 2018] Merlin, T., Stute, S., Benoit, D., Bert, J., Carlier, T., Comtat, C., Filipovic, M., Lamare, F., and Visvikis, D. (2018). CASTOR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction. Physics in Medicine & Biology, 63(18):185005.

Bibliography II

[Moses, 2011] Moses, W. W. (2011). Fundamental limits of spatial resolution in pet. Nucl. Inst. and Meth. in Phys., 648:S236–S240.

[Nadig et al., 2023] Nadig, V., Herweg, K., Chou, M. M. C., Lin, J. W. C., Chin, E., Li, C.-A., Schulz, V., and Gundacker, S. (2023). Timing advances of commercial divalent-ion co-doped lyso:ce and sipms in sub-100 ps time-of-flight positron emission tomography. Physics in Medicine & Biology, 68(7):075002.

[Ota et al., 2019] Ota, R., Nakajima, K., Ogawa, I., Tamagawa, Y., Shimoi, H., Suyama, M., and Hasegawa, T. (2019). Coincidence time resolution of 30 ps fwhm using a pair of cherenkov-radiator-integrated mcp-pmts. Physics in Medicine & Biology, 64(7):07LT01.

[Sarrut et al., 2022] Sarrut, D., Arbor, N., Baudier, T., Borys, D., Etxebeste, A., Fuchs, H., Gajewski, J., Grevillot, L., Jan, S., Kagadis, G. C., Kang, H. G., Kirov, A., Kochebina, O., Krzemien, W., Lomax, A., Papadimitroulas, P., Pommranz, C., Roncali, E., Rucinski, A., Winterhalter, C., and Maigne, L. (2022). The opengate ecosystem for monte carlo simulation in medical physics. PMB, 67(18):184001.

[Schart et al., 2020] Schart, D. R., Ziegler, S., and Zaidi, H. (2020). Achieving 10 ps coincidence time resolution in tof-pet is an impossible dream. Med. Phys/, 47(7):2721–2724.

[Shibuya et al., 2007] Shibuya, K., Yoshida, E., Nishikido, F., Suzuki, T., Tsuda, T., Inadama, N., Yamaya, T., and Murayama, H. (2007). Annihilation photon acollinearity in PET: volunteer and phantom FDG studies. <u>PMB</u>, 52(17):5249.

Bibliography III

[Toussaint et al., 2020a] Toussaint, M., Lecomte, R., and Dussault, J.-P. (2020a). Annihilation photon acolinearity with ultra-fast tof-pet. 2020 IEEE NSS MIC RTSD, pages 1–4.

[Toussaint et al., 2020b] Toussaint, M., Lecomte, R., and Dussault, J.-P. (2020b). Improvement of spatial resolution with iterative pet reconstruction using ultrafast tof. TRPMS, 5(5):729–737.

Ultrafast TOF on APA changes the shape of its blur - details

mm, 5k iter

mm 20k iter

mm, 5k iter

15 mm. 20k iter

14 16

8 10

Line profile of two point sources

with 13 ps FWHM TOF

Distance from center, mm

Direct image formation with perfect TOF resolution [Toussaint et al., 2020a]

Requirements:

- Only with <13 ps?
- Achievable with realistic detector size?

2.03

2.02 ntensity, a.u.

2.01

2.00

(106)

Spatial FWHM of point sources with 13 ps FWHM TOF

Theoretical spatial resolution: 2.6 mm FWHM. APA: 2.4 mm FWHM.

TOF: 26 ps, 14 it.

TOF: 130 ps, 28 it.

TOF: 13 ps, 8 it.

Theoretical spatial resolution: 2.2 mm FWHM. APA: 1.9 mm FWHM.

Gains (all values are in FWHM):

- 13 ps TOF: 0.6-0.8 mm
- 26 ps TOF (i.e., $\approx 2 \times APA$): 0.4 mm even with 1/10thStat
- 65 ps TOF (i.e., \approx 5×APA): 0.6 mm with at least HalfStat

Gains (all values are in FWHM):

- 13 ps TOF: 0.8-1.0 mm
- 26 ps TOF (i.e., $\approx 1.7 \times APA$): 0.6 mm even with 1/10thStat
- 65 ps TOF (i.e., \approx 4×APA): 0.6 mm with at least HalfStat