

Demonstration of LGADs and Cherenkov detectors for prompt gamma timing range verification of proton therapy

Ryan Heller¹, Justin Ellin², Michael Backfish², Joshua W. Cates¹, Woon-Seng Choong¹, Nicolaus Kratochwil², Eric Prebys², Leonor Rebolo², Sara St. James³, Gerard Ariño-Estrada^{2,4}

May 22nd, 2024, PSMR/FTMI 2024, Isola d'Elba

- ¹Lawrence Berkeley National Laboratory
 - ²University of California, Davis
- ³University of Utah Huntsman Cancer Institute
- ⁴Institut de Física d'Altes Energies, Barcelona

Proton therapy range verification

- Protons potentially offer better targeting of tumor than x-ray therapy, thanks to Bragg peak.
- But, requires aim in 3D, not just 2D

Depth in the Body

Figure 2. Comparing the relative percent depth dose of x-rays and protons.

• In practice, treatment planned with very conservative margins, negating a lot of the potential benefit.

Range verification techniques

- Many viable approaches using secondary particle emission
- PET, in-beam / post-beam
 - Mature systems, but require extra acquisition time & susceptible to biological washout.
- Prompt gamma rays—immediate emission and closer correspondence to dose.
- Direct imaging (PGI):
 - Compton camera: susceptible to combinatorics at high rate & BG
 - Collimation: sacrifice sensitivity
- Prompt gamma timing (PGT)
 - Time of flight proportional to depth
 - No collimator, and only single detection per PG

Moteabbed, España, Paganetti, Phys. Med. Biol. 2011

Prompt gamma timir • Key challenges - Pushing limits e res - High signal rate θ Backgroy $L_{\rm S}$ - Radiation b start d **Our approach:** Stop Start Pure Cherenkov Low Gain Avalanche Detector (LGAD) emitters scatterer absorber TlBr20 seatterer TlBr12 TICI5

Time of flight ~ depth of emission

Low Gain Avalanche Diodes (LGAD)

- Silicon ionization sensors optimized for timing: Low Gain Avalanche Detectors (LGADs)
- Thin depletion region (50 micron): fast & uniform signals
- Modest internal gain (x10-40): boost signal-to-noise. Analogous to APD, not SiPM
- Note for charged particles, thinness does not harm sensitivity
- Time resolution σ = 30 ps for MIPs, likely 20-25 ps for 50-200 MeV protons

LGAD (UFSD) also proposed for PGT by Pennazio, Ferrero et al

LGAD radiation hardness

- Originally developed for hadron colliders radiation and hit rate tolerance are critical.
- Study radiation hardness w/ nuclear reactor (up to 1.5 x 10¹⁵ neutrons / cm²)

Gain layer de-activates at very large fluence, but compensate by increasing bias voltage

LGAD radiation hardness

- Originally developed for hadron colliders radiation and hit rate tolerance are critical.
- Study radiation hardness w/ nuclear reactor (up to 1.5 x 10¹⁵ neutrons / cm²)

- Replace LGAD every 1-2 years in clinical system.

Cherenkov detectors

- Pure Cherenkov emission: instantaneous light. Ideal for timing and pileup tolerance
- Several good options: PbF₂, TlBr, TlCl
 - TIBr: can operate as semiconductor detector
 - TICI: higher Cherenkov yield. Can be doped for scintillation

Counts

- PbF₂: slightly higher stopping power
- Light yield heavily dependent on energy
 - 511 keV \rightarrow detect few photons
 - 2-6 MeV \rightarrow detect tens or hundreds
 - Set threshold to reject BG
- 3 prototypes studied: TIBr (12 mm)³ TIBr 3x3x20 mm³, TICI (5 mm)³

2.3 MeV 4.4 MeV 6.1 MeV

Ellin et al 2024 Phys. Med. Biol. 69 115002 Rebolo et al, 2023 IEEE TRPMS Ariño-Estrada et al 2019 Phys. Med. Biol. 64 175001⁸

Beam demonstration at UC Davis Crocker Cyclotron

Capture waveforms with CAEN DT5742 (DRS4)

Trigger on stop detectors with DRS4 USB module

- 67.5 MeV proton beamline used to treat ocular cancers. Operate at 225 pA
- Beam impinges on PMMA target on motion stage
- Scan target position over 12 mm range aim to detect range shift based on ToF.

Time of flight analysis

• Approach for time of flight depends on beam structure:

Time-averaged current: 225 pA

44.4 ns spacing

- LGAD could time single protons with $\sigma \sim 30$ ps
- This case—can't associate gamma with parent
- Instead, trigger on gamma, search for bunch timestamp. Multiple chances per event:
 - 4x bunches per window (modulo 44.4 ns)
 - 5x LGAD pixels

ToF resolution dominated by bunch width.

Example event

- LGAD signal resolves in 2 ns: ideal for high rate timing
- Cherenkov light production instantaneous, in this case long tail due to electronics—can also resolve much faster.
- Timestamp both LGAD and Cherenkov detectors at 20% CFD

Time of flight distributions

- Two populations in time of flight:
- "Control": prompt gammas from upstream collimator
- "Target": from PMMA phantom
- For range shift analysis, want robust marker for typical time. Fit each population with Gaussian, track position of mean - sigma

Statistical uncertainty, from bootstrap

- Take RMS of extracted times as statistical uncertainty

- Statistical uncertainty 10-12 ps for best performing detector (12 mm)³ TIBr, 25 ps for others.
- For 67 MeV protons, 1 mm ~ 9.3 ps. Roughly $\sigma = 1.3$ mm statistical uncertainty on range shift.

• Generate random histograms using poisson fluctuations around fit, re-perform fit to extract time

Range shift analysis

- Took data at 9 different target positions spanning 12 mm total
- Plot time shift vs position for both populations
- Accuracy check: slope should correspond to proton velocity at 67.5 MeV— 9.3 ps/mm
- Control population: useful check for timing drifts & systematic effects!

Stop detector 3, 12×12×12 mm³ TIBr

Range shift analysis

(5 mm)³ TICI

Stop detector 1, $5 \times 5 \times 5$ mm³ TICI Shift in time of flight [ps] Control population: dt/dz = -1.7 \pm 2.0 ps/mm; χ^2 /NDF: 2.3/7)0 100 Target population: dt/dz = -11.0 \pm 2.4 ps/mm; χ^2 /NDF: 6.8/7 Net slope: -5.5 ± 2.6 ps/mm 50 -50 Net slope: -9.3 ± 3.1 ps/mm 50 -50)0 -100 50 -150 2 0 12 10 2 0 6 8 Target position [mm]

- Observe systematic drift in Control population with all detectors, at roughly 2 ps / mm
- Ultimately all velocities consistent with 9.3 ps/ms expectation—

3x3x20 mm³ TIBr

(12 mm)³ TIBr

Eventually understood as LGAD-related drift. Correct Target population based on Control slope

• (12 mm)³ TIBr: 11.2 ± 1.1 ps/mm, (5 mm)³ TICI: 9.3 ± 3.1 ps/mm, 3x3x20 mm³ TIBr: 5.5 ± 2.6

Accelerator RF phase as start indicator?

rather than a dedicated start detector?

• Typically, RF signal from accelerator is readily accessible. Can we use it to time the bunch,

Accelerator RF phase as start indicator?

rather than a dedicated start detector?

• Typically, RF signal from accelerator is readily accessible. Can we use it to time the bunch,

• No! RF phase drifts by O(ns) on timescale of minutes. Start detector is needed! (At least, at this beamline.) 17

Concluding remarks

- Achieve 1.3 mm precision with sample size of 20-30k prompt gammas
- Typical pencil beam spot: 10⁸ protons, 10⁷ PG *
- Implies clinical system needs efficiency only 0.2-0.3% — very reasonable.
- Background is barely visible: SNR ~ 40
- Thanks to Pure Cherenkov emission
- Thanks to narrow time window

 Both factors could benefit PGI system w/ modest timing information, too.

Summary

- Detectors tolerate high rate and are relatively insensitive to background
- Control population at constant time extremely useful experimental tool
- Detector concepts promising for scaling towards full clinical system.

This work was supported by the National Institutes of Health through grant R01 EB029533 (PI Ariño-Estrada).

Successful demonstration of prompt gamma timing system with LGADs and Cherenkov detectors

Achieve 12 ps / 1.3 mm uncertainty (RMS) on range shift & accurately reconstruct proton velocity

LGAD risetime drift

LGAD risetime vs position, 5 channels

- LGAD risetime (10-90%) steadily increasing: 660 ps to 670 ps
- What is happening? Exaggerated radiation damage
- Total flux: 10¹³ protons (~1000 treatment fractions)
- Setup not optimized for radiation tolerance
 - Max bias voltage: 210 V
 - Uncontrolled temperature (≥ 30 C)
- Result: defects from rad damage increase leakage current, cause few volt droop in bias, reducing Efield and drift velocity in LGAD.
- This effect not relevant in clinical operation. Would operate at -20 C & scale voltage with damage.
- LGAD will perform for ~ 10^5 fractions, > 1 year.

