SIGNATURES OF THE YANG-MILLS DECONFINEMENT TRANSITION: GAUGE FIXING AND CENTER SYMMETRY

Duifje Maria van Egmond

arXiv:2206.03841, 2304.00756 [hep-ph]

In collaboration with Urko Reinosa

CONTENT

- Introduction
 - ▶ Center symmetry and confinement
 - Curci-Ferrari model
- Landau gauge results
- Background field methods
- Background effective action
- Center-symmetric effective action
- Results
- Conclusion and Outlook

INTRODUCTION

- In general: insight in the low-energy regime of QCD, especially in the confinement/deconfinement transition.
- Most results are coming from non-perturbative, numerical (lattice) or semi-analytical (FRG and SD) methods.
- From this, we know that:
 - ▶ At some very high temperature T_c , hadrons become free quarks and gluons \rightarrow quark-gluon plasma.
 - ▶ This transition is related to the breaking of the center symmetry of a gauge group when using pure Yang-Mills theory (infinitely heavy quarks):

$$\mathcal{L}=rac{1}{4}(extsf{F}_{\mu
u}^{a})^{2}$$

CENTER SYMMETRY

• An order parameter for the confinement/deconfinement transition at finite temperature is the Polyakov loop:

$$\ell = \frac{1}{N} tr\left[\langle P e^{i \int_0^\beta d\tau A_0(\tau, x)} \rangle \right] \propto e^{-\beta F}$$

- In the confined phase, F is infinite $\rightarrow \ell = 0$. In the deconfined phase, F is finite $\rightarrow \ell \neq 0$.
- The symmetry connected to this phase transition is the center symmetry.

・ロト ・ 同ト ・ ヨト ・ ヨト

CENTER SYMMETRY

• Center symmetry is a symmetry present in SU(N) Yang-Mills theories at finite temperature, where periodic boundary conditions restrict the gauge fields as

$$A_{\mu}(\tau+\beta,x) = A_{\mu}(\tau,x)$$

• This invokes a weaker restriction on the transformation field

$$U(\tau + \beta, x) = e^{i2\pi k/N} U(\tau, x)$$

with k = 0, ..., N - 1.

• Of these transformations, only U_0 , corresponding to k = 0 are genuine gauge-transformations.

イロト イポト イヨト イヨト

CENTER SYMMETRY

• The Polyakov loop (an observable) is not invariant

$$\ell \to tr\left[U(\beta,x)\langle Pe^{i\int_0^\beta d\tau A_0(\tau,x)}\rangle U^{\dagger}(0,x)\right] = e^{i2\pi k/N}\ell,$$

unless $\ell = 0$ (confinement region).

- The breaking of the center symmetry at high temperatures was confirmed by lattice data: second order transition for SU(2), first order for SU(3).
- We want to probe the breaking of center symmetry in an analytical model at finite temperature.

ANALYTICAL RESULTS

• At high energies, gluon dynamics are well described by an SU(3) pure Yang-Mills action with a Faddeev-Popov gauge fixing:

$$\mathcal{L} = \frac{1}{4} (F^{a}_{\mu\nu})^{2} + \partial_{\mu} \overline{c}^{a} (D_{\mu}c)^{a} + ib^{a} \partial_{\mu} A^{a}_{\mu}$$

- At high energies, the coupling constant decreases: Asymptotic freedom.
- At low energies, the coupling constant increases, and diverges: Landau pole.

• Does this mean we have an infinite coupling at low energies? Probably not!

GRIBOV PROBLEM

• Gribov: for high values of the coupling constant, the FP gauge fixing does not uniquely fix the gauge field

$$A^{\prime a}_{\mu} = A^{a}_{\mu} - D^{ab}_{\mu} \alpha^{b} \qquad \partial_{\mu} A^{a}_{\mu} = \partial_{\mu} A^{a\prime}_{\ \mu} = 0$$

so that

$$\partial_{\mu}D_{\mu}^{ab}\alpha^{b} = (\partial^{2}\delta^{ab} - gf^{abc}\partial_{\mu}A_{\mu}^{c})\alpha^{b} = 0$$

- An analytic model of the IR regime should restrict the number of Gribov copies:
 - Gribov-Zwanziger model:

$$\mathcal{L} = \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu} + \bar{c}^{a} \partial_{\mu} D^{ab}_{\mu} c^{b} + ib^{a} \partial_{\mu} A^{a}_{\mu} - \bar{\omega}^{ae}_{\nu} \partial_{\mu} D^{ab}_{\mu} \omega^{be}_{\nu} + \bar{\varphi}^{ae}_{\nu} \partial_{\mu} D^{ab}_{\mu} \varphi^{be}_{\nu} - g \gamma^{1/2} f^{abc} A^{a}_{\mu} \left(\varphi^{bc}_{\mu} + \bar{\varphi}^{bc}_{\mu} \right) - \gamma dd_{G}$$

• Curci-Ferrari model:

$$\mathcal{L} = \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu} + \bar{c}^{a} \partial_{\mu} D^{ab}_{\mu} c^{b} + ib^{a} \partial_{\mu} A^{a}_{\mu} + m^{2} A^{a}_{\mu} A^{a}_{\mu}$$

イロト 不得下 不足下 不足下

- $\mathcal{L} = \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \bar{c}^a \partial_\mu D^{ab}_\mu c^b + i b^a \partial_\mu A^a_\mu + m^2 A^a_\mu A^a_\mu$
- Gluons do not have a mass perturbatively
- BRST-symmetry that defines the physical space is broken
- However, for $p \gg m$, $m \approx 0$
- Confined gluons do not have a physical interpretation, so BRST symmetry might be broken non-perturbatively

イロト イポト イヨト イヨト 二日

- $\mathcal{L} = \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \bar{c}^a \partial_\mu D^{ab}_\mu c^b + i b^a \partial_\mu A^a_\mu + m^2 A^a_\mu A^a_\mu$
- Lattice results show that the gluon propagator saturates in the IR
- The CF model could be an effective model that accounts for the lattice results

m=0.68 GeV, $\mu=1$ GeV, g=7.5

*M. Tissier and N. Wschebor, PRD, 84, 045018 (2011).

	San Miniato		10/3'
• • • • • • • • • • • • • • • • • • •	P > < 3	ter k terk	三

10/37

- The CF model is IR safe and might give a perturbative window into the low-energy regime.
- Can we use the CF (or GZ) model to describe the confinement/deconfinement transition? In principle: Yes. In practice: Maybe.

Duifje van Egmond

ENCODING OF THE TRANSITION

Polyakov loop:

$$\ell \sim \langle P e^{i \int_0^\beta d\tau A_0(\tau,x)} \rangle \sim e^{-\beta F}.$$

Because the Polyakov loop is related to A_0 , it is expected that the transition is encoded in (the tower of)

$$\langle A_0 \rangle, \langle A_0 A_0 \rangle, \dots, \langle A_0^n \rangle.$$

For the appropriate choice of gauge, can the transition be reflected in the lowest order correlators?

LANDAU GAUGE CORRELATOR

In principle:

- $\langle A \rangle$ is found by minimizing the effective action $\Gamma[A]$. It represents the state of the system . $\langle A_0 \rangle \rightarrow$ order parameter.
- The two-point correlator derives from the effective action

$$1 \left/ \left. \frac{\partial^2 \Gamma}{\partial A^2} \right|_{A = \langle A \rangle} = \langle A A \rangle_c,$$

so for $SU(2),\,\langle A_0A_0\rangle$ should diverge at $T_c.$

In practice:

- In the Landau gauge, $\partial_{\mu}A_{\mu} = 0$, then $\langle A_0 \rangle = 0$. \rightarrow no order parameter.
- No evidence of divergence of $\langle A_0 A_0 \rangle$ was found on the (gauge-fixed) lattice and in the continuum.

イロト 不同下 不同下 不同下 一日 うろの

SU(2) LANDAU GAUGE CORRELATORS

Electric susceptibility (zero momentum longitudinal propagator)

*T. Mendes and A. Cucchieri, PoS LATTICE2014, 183 (2015).

э

イロト イヨト イヨト イヨト

SU(2) LANDAU GAUGE CORRELATORS

Longitudinal gluon propagator

- *U. Reinosa, J. Serreau, M. Tissier, N. Wschebor, Phys. Rev. D, (2015)
- *L. Fister and J. M. Pawlowski, [arXiv:1112.5440 [hep- ph]](2012).

ъ

イロト イポト イヨト イヨト

BACKGROUND FIELD GAUGES

- A priori there is no reason to believe that the Landau gauge will provide the right environment to keep track of the centersymmetry breaking.
- In the Landau gauge the effective action is not explicitly center symmetric since $\Gamma[A] \neq \Gamma[A^U]$.
- This should not alter the physical results in principle, but it can lead to problems when approximations (loop calculations) are involved.
- To regain gauge invariance, one solution is to work with the Background Field Gauges.

・ロト ・ 同ト ・ ヨト ・ ヨト ……

BACKGROUND FIELD GAUGES

To retain the center symmetry, we introduce the Landau-DeWitt gauge

$$\overline{D}_{\mu}(A_{\mu}-\overline{A}_{\mu})=0,$$

with \overline{A}_{μ} an arbitrary background field and $\overline{D}_{\mu} \equiv \partial_{\mu} - [\overline{A}_{\mu}, \cdot]$. We consider the action

$$S[A,\overline{A}] = \int_{X} \left\{ \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu} + \overline{D}_{\mu} \overline{c}^{a} D_{\mu} c^{a} + i b^{a} \overline{D}_{\mu} (A^{a}_{\mu} - \overline{A}^{a}_{\mu}) + m^{2} (A^{a}_{\mu} - \overline{A}^{a}_{\mu}) \right\},$$

which is invariant under the simultaneous SU(N) transformation of the fields A^a_μ and \overline{A}^a_μ

$$S[A^U,\overline{A}^U] = S[A,\overline{A}],$$

and gauge invariance is preserved (in a way).

BACKGROUND FIELD GAUGES

$$S[A^{U}, \overline{A}^{U}] = S[A, \overline{A}]$$

$$\Gamma[A^{U}, \overline{A}^{U}] = \Gamma[A, \overline{A}]$$

Checking the invariance under center transformations of $A_{\min}[\overline{A}]$ is ambiguous:

$$\Gamma[A_{min}(\overline{A}),\overline{A}] = \Gamma[A_{min}^U(\overline{A}),\overline{A}^U].$$

Transforming the minimizing state transforms it into the minimizing function of another potential, with another gauge fixing. Therefore, we cannot identify the center-symmetric states.

Background effective action

In the method of the BG effective action¹, we define a new object

$$\widetilde{\Gamma}[\overline{A}] \equiv \Gamma[A = \overline{A}, \overline{A}],$$

and we can show that \overline{A}_{min} such that

$$\widetilde{\Gamma}[A_{min}(\overline{A})] \leq \widetilde{\Gamma}[\overline{A}], \quad \forall \overline{A}$$

are alternative order parameters for center symmetry. There is no ambiguity anymore since:

$$\widetilde{\Gamma}[\overline{A}] = \widetilde{\Gamma}[\overline{A}^U].$$

The drawback of the BG method is that $\tilde{\Gamma}[\overline{A}]$ is a formal object an does not relate directly to gauge-fixed quantities such as propagators and vertices.

¹J. Braun, H. Gies and J.M. Pawlowski, Phys. Lett. B 684;262-267 (2010) = ∽ ⊲ ⊂ Duifie van Egmond San Miniato 19/37

- Asking for a gauge-fixing which preserves all the gauge transformations is asking too much. But we are only interested in preserving center-symmetry, not full gauge invariance!
- To find a genuine gauge-fixing which preserves center symmetry, let us go back to the transformation

$$U(\tau+\beta,x)=e^{i2\pi k/N}U(\tau,x)$$

with k = 0, ..., N - 1. We can divide all the transformations into N subsets U_k . Different $U'_k s$ within U_k are connected through $U_k = U'_k U_0$.

• The Polyakov loop only "feels" \mathcal{U}_k , so we need a gauge such that

$$\exists U_0 \text{ such that } \Gamma[A, \overline{A}] = \Gamma[A^{UU_0}, \overline{A}^{UU_0}]$$

Center-symmetric effective action

In the solution of the CS effective action, we define the center symmetric state ${\cal A}_c$ as

$$\exists U_0$$
 such that $A_c = A_c^{UU_0}$

and make the gauge choice $\overline{A} = A_c$. Now

$$\Gamma[A, A_c] \neq \Gamma_c[A^U, A_c], \quad \forall U$$

but

$$\exists U_0 \ \Gamma[A, A_c] = \Gamma[A^{UU_0}, A_c].$$

There is no ambiguity since the background field \overline{A} is fixed.

Since $\Gamma_c[A]$ is nothing but a particular gauge choice of $\Gamma[A, \overline{A}]$, we can directly reach gauge-fixed quantities such as propagators and vertices.

OUR SETUP

• We work in the Landau-deWitt gauge with a background field \bar{A}_{μ} :

$$ar{D}_{\mu}(A_{\mu}-ar{A}_{\mu})=0, ext{ with } ar{D}_{\mu}\equiv\partial_{\mu}-\left[ar{A}_{\mu},\cdot
ight].$$

- We take \bar{A} and $\langle A \rangle$ in the temporal direction, $\propto \delta_{\mu 0}$
- We take A
 A and ⟨A⟩ along the diagonal color directions tⁱ (σ³ for SU(2), (λ³, λ⁸) for SU(3)), so that Γ[A, Ā] ∝ V(A, Ā).
- We write $\langle A \rangle = \delta_{\mu 0} \frac{T}{g} r^i t^i$ and $\bar{A} = \delta_{\mu 0} \frac{T}{g} \bar{r}^i t^i$.

SU(2) CENTER SYMMETRY

- $A^U: r \to r + 2\pi$
- A^{U_0} : reflection of r in $2\pi n$
- Centersymmetric point at $r_c = \pi$
- We fix $\overline{r} = r_c$: Center-symmetric Landau gauge. Center-symmetric phase when $r = r_c$, \rightarrow order parameter.

イロト 不同ト イヨト イヨト

San Miniato

23/37

SU(3) CENTER SYMMETRY

- $A^U\!\!:$ translation of $\{r_3,r_8\}$
- A^{U_0} : reflection of $\{r_3,r_8\}$
- Centersymmetric point at $r = \{4\pi/3, 0\}$
- We fix $\overline{r} = r_c$: Center-symmetric Landau gauge. Center-symmetric phase when $r = r_c$, \rightarrow order parameter.

- 4 周 ト イヨト イヨト

We looked at the one-loop potential to find $\langle A \rangle$ and T_c

▶ < 重 > < 重 > 重 少 Q ペ San Miniato 25 / 37

RESULTS - $T_c(MeV)$

	Lattice	$FRG-BG^2$	CF-BG, $1-lp^3$	CF-BG, 2 -lp ⁴	CF-CS, $1-lp^5$
SU(2)	295	230	238	284	265
SU(3)	270	275	185	254	267

BG: Background effective action CS: Centersymmetric Landau gauge

Duifje van Egmond

 $^{^{2}}_{\rm }$ L. Fister and J. M. Pawlowski, Phys.Rev. D88 (2013) 045010

³U. Reinosa, J. Serreau, M. Tissier and N. Wschebor, Phys.Lett. B742 (2015) 61-68.

⁴U. Reinosa, J. Serreau, M. Tissier and N. Wschebor, Phys.Rev. D93 (2016) 105002.

⁵DvE, U. Reinosa, J. Serreau and M. Tissier, SciPost Phys. 12, 087–(2022) + (=

FEYNMAN DIAGRAMS GLUON PROPAGATOR

- Calculated in finite temperature trough Matsubara techniques: $\int d^d Q \to T \sum_q \int d^{d-1} q$
- We calculated the spatial integral with Feynman techniques, the Matsubara sums numerically.

RESULTS: *SU*(2) GLUON PROPAGATOR

*DvE, U. Reinosa, J. Serreau and M. Tissier, SciPost Phys. 12, 087 (2022).

Duifje van Egmond

San Miniato 28/37

ъ

イロト イヨト イヨト イヨト

RESULTS: SU(2) GLUON PROPAGATOR

Landau gauge Background Field Effective action Center-symmetric Landau Gauge

RESULTS: SU(2) GLUON PROPAGATOR

Duifje van Egmond

San Miniato 30/37

ъ

イロト イヨト イヨト イヨト

SU(2) DRESSING FUNCTION

э

イロト イヨト イヨト イヨト

RESULTS: *SU*(3) GLUON PROPAGATOR

*DvE, U. Reinosa, J. Serreau and M. Tissier, SciPost Phys. 12, 087 (2022).

Duifje van Egmond

San Miniato	32 /	37
-------------	------	----

3

イロト 不得す 不良す 不良す

SU(3) PROPAGATOR DIFFERENCE

ъ

SU(3) PROPAGATOR DIFFERENCE

Duifje van Egmond

San Miniato 34/37

ъ

イロト イヨト イヨト イヨト

SU(3) DRESSING FUNCTION

э

SU(3) POLYAKOV LOOP

ъ

イロト イポト イヨト イヨト

CONCLUSION AND OUTLOOK

- We have performed, for the first time, calculations of the gluon one-and two-point correlator in the centersymmetric Landau gauge.
- We find a good agreement with lattice data for T_c .
- We find that for SU(2), the deconfinement transition is signaled by a divergence of the longitudinal gluon propagator for $k \to 0$.
- For SU(3), the difference between the propagators in the neutral color mode is an order parameter for the transition.
- This model can be tested on the lattice by changing the boundary conditions in the Landau gauge [with O. Oliveira and P. Silva].
- Ideas for future works: RG improvement, transversal propagator and dynamically generated mass [with D. Dudal and D. Vercauteren].