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Plan

» Part 1: Integration of the conformal anomaly

» Part 2: Wess-Zumino consistency conditions of the Weyl anomaly
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Rather general quantum field theory

Part 1
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Part 1:
Integration of the conformal anomaly
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Classical Weyl (conformal) symmetry

Local Weyl rescalings

G — 8 =0"8gw P =e"0

The energy-momentum tensor

2.5
V8 08uv

TH =

Nother identities of Diff and Weyl symmetries

V. T =0 T, =0
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Quantum Weyl (conformal) symmetry
From the path-integral

el = /[dd)] e >

2 or
THYY — __©
(1T"") NP

The renormalized EMT

Conformal anomaly coming from the renormalization

(T",) = beta terms + anomaly
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In two dimensions

For zero beta functions 8 = 0 the anomaly is

(TF,) =aR
We want to integrate the anomaly, take g, = e2"gw,
VER = VE(R—2V?0)
Using 2T ~ (T), find Fipq C T

Mina = a/d2x\/§ (oR + oV?0)

On-shell in o we get Polyakov's
a 1
Find = 1 /de\/Esz R
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In four dimensions

The anomaly is
(TH,) = bW? + aEy + J'0OR

Having defined
~ 2 2
Ey=E4 — gl]R =E,+V* (—3VaR>

The transformations
VEE: = VE (B +4B40) VEW? = VEW?

1 (5 ‘ LV
\/gDR: 71@ /(14X\/§R} R/u/
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Four dimensional anomaly

We can integrate each term separately

a ~ 1
= Ceontlg] + 55 / d*x /g R + / d*x /2 (bl W2 + alE4) £
4

Applications
» Quantum field theory — C- and A-theorems
» Black holes — corrections to BH entropy

» Cosmology — expanding universe
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In general even d

The anomaly is conjectured (Cardy)

(T =Y bWi+aky+V,7"

1

Such that 3
Eq=Eq+V,VF

The transformations
V&Ea = VE (Es+ dbgo) VBW: = VEW,

o f .
\/Ev/lj“ = % / d*x \/§£l<>(t:11(g~ g, -+ )
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d-dimensional anomaly

We can integrate each term separately

' ~\ 1
F= g+ [ dxvgluc+ [ dxvE (bWi+ abs) 4 Eo
. d

Main points
> Existence of £
> Existence of Ay
> Ambiguities in L.
» Enumeration of W,
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Conformal geometry
and the Fefferman-Graham ambient space
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Lightcone embedding in flat space
Move from RY to R9*2 on the lightcone

YA=(YH, YT, Y) nasYAYEB =0 YA ~ AYA

Spacetime embedding in the lightcone

xH = YA = (YR YT YT = YH(x* 1, —x?)
YH

A no__
Y& — x = v

Embedding Lorentz generates conformal on spacetime
(Y"")znw,dxl“dx’” = (Y+)277de"dxy
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Fefferman-Graham ambient space

Use Cartesian coordinates, X2 = 2t%p, t = X*

142p — x? 1—2,0—|—x2)

YA Ly xA — (X;L7Xd+17Xd+2) * t(x“, : ’ :

The flat embedding metric

ii = nagdx?dx® = 2pdt? + 2tdtdp + t%1),,, dx" dx”

In curved space: FG metric with Ragp =0, L:9,& = 2& and h,,(x,p =0) = gu

g = Bapdx?dx® = 2pdt? + 2tdtdp + t?h,,,(x, p)dxtdx”
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Ambient Space in a nutshell

% d+2
w.c_ﬁ n&'

Capn

Pep
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PBH diffeomorphisms

A diffeomorphism of the ambient

Scéap = Lcéap = CCOcka + 8acOsCE + ErcOaC”

If it preserves the form of the ambient metric

¢* = to(x) P = —2po(x) T

It generates Diff x Weyl on spacetime

Schuvlp=0 = 0c8uv = bo.e8uw = 208w + V& + V&

16/32



Ricci-flatness determines h,,

Expand in p

1
hMV(X7p) = guV(X) + Ph(l);w + Epzh(z)uu + st

The coefficients find obstructions in even d

2 R
WD, =2P = ——(Ru — =g
g " d—2<“ 2(d—1)g">

2
h(2)u1/ = _m uv + 2PMO-PU,,
2

= e

V2Bw/_|_...
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Ambient Laplacian

Scalar Laplacian of the embedding

1
2

2 1 d—2
0P — $0:0,® — 00 — = 70,0 + LW, 19,0

_Dg¢: - t2 t2

Consider an embedding scalar field

& = t8¢p(x)
The projection of the Laplacian gives Yamabe

—Og(t250(x)) om0 = t272 (0 — 2(dR1>)so

We can construct a family of powers of conformal GJMS Laplacians

_ 2n+d 2n—d

> (=0g)"(t 7 ¢)lp=0

Porp(x) =t
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Conformal Laplacians

There are derivative and constant parts

d—2n
2

P2n90(X) = Ao, + Q2on

Constant part transforms nicely: Q-curvatures in d = 2n

VEQy = VE(Qq + Ago)

In fact we just found in d = 2n

Ed = dQq + conformal invariants
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A physicist proof of Cardy’s conjecture

The anomaly is best parametrized

(T =D bW, +aQq + V,.J"

So that the integration is always possible

' 1
F=lgl+ [ dx/BLic+ [ dx VE(6Wi+ 2Qs) 5

» Ambient curvatures enumerate conformal invariants
» Scaling analysis dictates local anomaly (J* is like a "virial” current)

» Ambiguities in defining Ay come from embedding Riemann in d > 6
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Part 2:
Wess-Zumino consistency conditions of Weyl symmetry
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The gauged Weyl group
Introduce an Abelian gauge potential

guv — gZW = ezgguu SM — SL = SM — 8ua O — P ="

The gauged covariant derivative
Vi =V, 0+ L, &+ weS,o

« 1 « (67 «
(Lu)"5 = 5(Ss0 + Su08 — S°g)

It transforms covariantly under Weyl
Vu® = Vo' = eV,
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Classical consequences

There is a new dilation current

T 23S L 14s

NI N

Gauged Weyl and Diff symmetries imply

TH,=V"D, V. T + D,WH =0

In flat space gy, — 0, and S, — 0 imply scale invariance with J, = D,

TH, = 0", 0, T =0
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Renormalization with local couplings

Suppose S D — fddx\/g)\i(x)(’)i and a finite renormalized path-integral

e = / [dd]e=S

Currents source the expectation values

2 or 1 or 1 oI

<TW>:—ﬁ5gW DM>IEE <Oi>:_ﬁ5)\i

We expect [d®] to give an anomaly

(TH,) = (V#D,) + beta terms + curvatures
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Local rg interpretation

Local scale transformation on the geometrical sources
) 0
AV = {2 2 7}
o / 78 g 73S,

Local scale transformations caused by the rg beta functions

-0
A=~ [ o
o /” I\
The anomaly (T*#,) — (V#D,) = --- becomes
AO.VVI—:Agr"_AJ AO’D{auAi)Rvsu'”}
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Wess-Zumino consistency

Rewrite

AT = (AW — MO = A,

For Wess-Zumino's consistency

[Ay, AT =0

Consistency condition for the anomaly

(AY —ADA, — (0= 0')=0
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Two dimensions
Most general parametrization of A, using R = R 2VES, ind =2
1 A ii ; ; ;
A, = > /dzx\/E{UB;R — aﬁaug’a“gf — Ouow;ot'g’
+wmm§ﬂ+ﬁ%55# @wﬁ9+ﬁ@%yy}

Apply Wess-Zumino's

1
[Ay, Ayl = 5 /dzx\/g(aﬁual — J’@,LU)Z“ =0
T

Conditions among tensors and /3
Z,=0,8'Yi+S5,X =0
Vi = —0iBw + xy¥ — FOw — woip + z
X =35 - 30835 — zf'
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(Ir)reversibility
Define a new charge
By = By + wiB' + B3
Using both J; =0and Z2=0
d » in A inj . pS
MaﬁwZﬂaﬁwzxﬁmf+%
Reproduce standard local rg taking Sy = Bo, 6; = ,63‘? =0. B\U becomes Osborn's BNq,
There is a scheme (Zamolodchikov’s) in which x;; — G = |x|* (0;(x)©0;(0)) > 0
d -
—_— 0
Mduﬂwi>

In general: 85 > 07
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A weird application: higher derivative scalar

Higher derivative free scalar is a CFT in flat space

L= (@)

Notice that {¢(x)p(0)) ~ |x|? for ¢ primary, in contrast with (92)?((x)p(0)) ~ 5(x)

It does not admit a conformal action in d = 2 because of the obstruction

1
Sconf[soag] = _2/d2x\/§§0A4§0
Bap = (V220 + 2V (P W p 4+ ) = (d = 4) (PP + -+ )

1 1
P,,:i{R,,—iR }
=g Ut T (g — 1) e
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Gauged higher derivative scalar

Assign the weight w(y) = % —1

1 A
Slo- g1 S =~ [ PxvEAT)

It does exists in d = 2

(V22 = (V)20 + BH'V .8, + C1,p + Dy
B,uu = QgMVS'OSp — 45“51, + 4V(#5,/)

Using heat kernel methods 35 = 0, 3o = % and [y = %

Ay = % /d2x\/§0{lg + V"S5, )
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Conclusions

» FG embedding is the natural framework to study the conformal anomaly

= Complete the proof of Cardy's conjecture

» Local RG can be generalized to gauged Weyl symmetry

— Extend to d = 4 and study “scale vs conformal”
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Thank you for listening
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