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Lew. D. Landau (*1908, T 1968)
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78 ACHIMIITOTHYECKOE BBIPAJREHHE
JJIA 'PHHOBCKOH ®YHKIMMA ®OTOHA
B KBAHTOBON 3JIERTPOJWHAMHUKE

Cosmecto ¢ A. A. ABPUKOCOBBIM
2 1. M. XAJATHHKOBBIM

NIAH CCCP, 95, 1177, 1954 1954

B npepmaymmx paGorax [1, 2] nmamu Gwman noxyyensl olmue MHTEr-
palbHEe YPaBHERMS KBAHTOBOM 3MEKTPOJMHAMMKH HYJIeBOr0 UpPH-
GAMyKeHHA M HAMJEHM ACHMITOTHYECKHE BHIPAMKEHMS JJIA JNEKTPOH-
BOi rpuHEOBCKOM pyERumE G ¥ BepmuaHO# gacth I',. Tenmeps Mm npn-
MEHHM NOJyYeHEEE De3yJAbTATH A HaXoxAeHEA (oTOHHON rpm-
BOBCKOM ¢yEkmmm D,,.

1 k2
— 551 In m2,

Gauge invariant photon propagator

@opmyna paa d, momxer ObTh Teneph HaNMCAHA B BHAE

(11)

(mpm &k > m). C TOYHOCTBIO O ¢IEPEHOPMEPOBOYHOTO) MHOKHTEAA
d; OKa3HBaeTCA, KAK M CJIJOBANO, HE 3ABMCANMM OT pagMyca ¢pas-
MAaSHBAHHAN.
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(Received April 1, 1954)

The renormalized propagation functions Dp¢ and Sr¢ for photons and electrons, respectively, are in-
vestigated for momenta much greater than the mass of the electron. It is found that in this region the indi-
vidual terms of the perturbation series to all orders in the coupling constant take on very simple asymptotic
forms. An attempt to sum the entire series is only partially successful. It is found that the series satisfy
certain functional equations by virtue of the renormalizability of the theory. If photon self-energy parts are
omitted from the series, so that Dpe=Dp, then Sp¢ has the asymptotic form A[p2/m?]*[4v-p], where
A=A4(e?) and n=n(e;?). When all diagrams are included, less specific results are found. One conclusion is
that the skape of the charge distribution surrounding a test charge in the vacuum does not, at small dis-
tances, depend on the coupling constant except through a scale factor. The behavior of the propagation
functions for large momenta is related to the magnitude of the renormalization constants in the theory.
Thus it is shown that the unrenormalized coupling constant e?/4r#c, which appears in perturbation theory
as a power series in the renormalized coupling constant e ?/4nfic with divergent coefficients, may behave in
either of two ways: '

(a) It may really be infinite as perturbation theory indicates;

(b) It may be a finite number independent of ¢,2/4rkc.
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as perturbation theory indicates;
number independent of e:2/4rkc.
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PHYSICAL REVIH

Consequences of Dirac’s Theory of the Positron

W. Heisenberg and H. Euler in Leipzig!
22. December 1935

Abstract

According to Dirac’s theory of the positron, an electromagnetic field
tends to create pairs of particles which leads to a change of Maxwell’s
equations in the vacuum. These changes are calculated in the special case
that no real electrons or positrons are present and the field varies little
over a Compton wavelength. The resulting effective Lagrangian of the
field reads:
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|Ep|=g—= 137 (a2 /med)Z = critical field strengths

The expansion terms in small fields (compared to € ) describe light-light
scattering. The simplest term is already known from perturbation theory.
For large fields, the equations derived here differ strongly from Maxwell’s
equations. Our equations will be compared to those proposed by Born.
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For large fields, the equations derived here differ -
equations. Our equations will be compared to those proposed b




FRG SETUP & EFFECTIVE ACTION

4 )

Maxwell action in vacuum:

S [A] = / (_iFwa) at

- e /

F.. =0,A, —9d,A,
field strength




FRG SETUP & EFFECTIVE ACTION
4 o _ I . -
Maxwell action in vacuum: Nonlinear electrodynamics:

sial= [ (—EFWFW) e [ £(ForoF,.) d

derivative o
s expansion =W (F,G) +...

Euclidean action: A scheme:
) - W-Rot.
F[A]:/W(E,Eﬁ) do |
N “

P-Inv. I — 1 F EHv _
J

fundamental local

\ U(1) invariants /




FRG SETUP & EFFECTIVE ACTION

Maxwell action in vacuum:

s[A}::L/“<}_iFMVFMv) dia

\

)

-~

Euclidean action:

S

continuous scale-
dependence

\

L] = [ #(7.9%) dta
R4

~

re-definitions: ~

Wy = k_4W_]€
F = Zkk_43}
etc. ... J

-
e

W-Rot.

P-Inv.

/ Nonlinear electrodynamics: \

um:/cmdﬁ?m

R3,1

derivative o
expansion =W (F.G) + ...

scheme: / \

fundamental local

\ U(1) invariants
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scale-dependent & gauge-fixed effective action:

Iy [A] = k4/ (wk (#,9%) + % (8MA“)2> d*z

.

R4

)




FRG FLOW

scale-dependent & gauge-fixed effective action:

Ty [4] = K / (wk (7,94°) +

R4

S (8MA“)2> dx
o

\ %
5)42 g FRG: assume the existence of a flow equation for L'z .
\
ol ’ o / 1 (2) -1 \
"/ g kO .I', = §Tr (Fk + Rk) kOL Ry
r ;T2 % /
. e = Regulator:
i
. >7 p? 1
. v Ri(p) = Zip°r (ﬁ) |:PT + —PL]
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Field space projectors
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FRG FLOW

1 2 1
Iy [A] = k* / (wk (#,97) + 5 (aﬂAuf) dzx Ri(p) = Zppr (%) [PT + aPL]
R4 \ /
1 (2) -t

ko1 = 5']:‘1' (Fk -+ Rk) kOrL R

Projection on wy, (field strength homogeneity)
4 1 I
kOwy, + 4wy, — (ny + 4) (W F + 2097 = — 35,3 /yz(ﬁk’r +2y°r" )Yy, dty
H_/ \ v J o

i y,

RG time Tree level contributions \ Y

derivative Loop level contributions
N P /




GLOBAL FIXED FUNCTIONS

Q: What are global fixed functions?

4 )
EAA of any theory: Iy [®] = k* /ﬁk (<I>, 0P, 0D, .. ) d*z

/ R4 \
dimensionless

collection of d.o.f. Lagrangian density
\_ J
Assume existence
of a flow equation / : i k \
q Define RG time: t:=In( —
A
1
8t£k; = —2k4TI‘ [ch‘)tRk] — 4£k:

KRG stationarity condition: Oy Ly |+« = O/

1
Ly = Q4 Tr |GrOyRy] ‘* FFE: PDE for fixed function;
global solution in the mathematical
Fixed Function Equation (FFE) sense defines a global fixed function.
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TRUNCATIONS

Flow equation for nonlinear electrodynamics:

4 . | I
Wy = (1 + Z*) (W), F + 21,97 — /y2 (ner + 2¢°7") Y d*y

,\/v 327‘(‘2 ks /v

Partial differential eq. * contains derivatives of fixed function,

* highly nonlinear

o J

Truncation | Truncation |l
Discard dependence on the Restrict on self-dual
pseudo-scalar invariant: field configurations:

4 F — «F

l

| (Fy)* = (xFy)? = Fy?

[w* (F,97) — w, (F) ]

F
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WILSON-FISHER PROCEDURE

Inspired from the Wilson-Fisher fixed point solution;
O(1,R) Ising model in 1+2 dimensions

L'y [¢] = / ( (Du9)® + KV (¢)) d%\

RS

-

EAA ansatz:
scale-dependent,

dimensionless
effective potential

- /

1 1
1872 14 V)

FFE:  V, = + égbv*/
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WILSON-FISHER PROCEDURE

Inspired from the Wilson-Fisher fixed point solution;
O(1,R) Ising model in 1+2 dimensions

N
Expansion for Vi(p) = %(p@
sk - .
small fields: ; 2!
02f U2 = H . ]
~= -
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sub-truncation order N
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WILSON-FISHER PROCEDURE

Inspired from the Wilson-Fisher fixed point solution;

O(1,R) Ising model in 1+2 dimensions

Expansion for
small fields:

N
w(F) = ui T’
1=0
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Very similar to
shift-symmetric
scalar fields

!

de Brito, Knorr &
Schiffer (23):
inconsistencies in
flow equation
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T)-PERSPECTIVE

e.g. 1-loop pert. theory of
photon field:

,u(n*) — 96772 e~ Full global fixed function

8_77* 20v

nph—g

Instead of tracing successive sub-truncation orders (Wilson-Fisher),
consider the anomalous dimension as an external parameter.

Fixes all coefficients of Expansion for large
small field expansion values of invariant
N /
) oo I
w*(ﬁ):Zuigﬂ w*<g):c+)\gA+ZZ>\?ggaA—I
=0 / I=1a=
T =1a=1 \
\/ constant free unknown
parameter _ 4 coefficients
4 + .

o /
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Wy (F)

1

01F
0.01 combined
solution
| | |
0.00001 0.0001 0.001 0.01 0.1
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SUMMARY

® Globally existing fixed function for a purely V
magnetic background

@ No Landau pole type singularities in the strong field regime of
nonlinear electrodynamics

How does this result extend to more t)
‘ general/complete systems?

[ THANK YOU FOR LISTENING! J
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