The spectrum of Asymptotic Safety from $2+\varepsilon$ gravity

Riccardo Martini
I.N.F.N.- Sezione di Pisa
Based on collaborations with O. Zanusso, A. Ugolotti, F. Del Porro, D. Sauro: arXiv 2103.12421, 2302.14804

UV Complete Quantum Field Theories for Particle Physics, 2023, San Miniato

September 5th, 2023

Motivation I

- Original formulation of asymptotic safety [Weinberg, 1979] based on results in gravity close to $d=2$

Credit: H. Gies

Motivation I

- Original formulation of asymptotic safety [Weinberg, 1979] based on results in gravity close to $d=2$

Credit: H. Gies

- First application of non-perturbative RG flow to test the conjecture in $d=4$ [Reuter, 1998]
- Non-perturmative computations based on Functional renormalization group [Wetterich, 1993; Morris, 1993]
credit: Reuter \& Saueressig, 2001

Motivations: II

Functional Renormalization Group cons:

- Theory space is infinitely dimensional \rightarrow need of truncation
- Strong regulator and scheme dependence
- Gauge dependent results

Motivations: II

Functional Renormalization Group cons:

- Theory space is infinitely dimensional \rightarrow need of truncation
- Strong regulator and scheme dependence
- Gauge dependent results

> Physics lies in on-shell observables
> imposing equations of motion along the RG flow \bullet
> Essential Renormalization Group •
> [Weinberg, 1979; Benedetti, 2011; Anselmi, 2013; Baldazzi, Zinati, Falls; 2021]

Motivations: II

Functional Renormalization Group cons:

- Theory space is infinitely dimensional \rightarrow need of truncation
- Strong regulator and scheme dependence
- Gauge dependent results

Physics lies in on-shell observables
imposing equations of motion along the RG flow •
Essential Renormalization Group •
[Weinberg, 1979; Benedetti, 2011; Anselmi, 2013; Baldazzi, Zinati, Falls; 2021]
Revise perturbative methods

- Revise perturbative computations in $d=2+\varepsilon$
- Does the analytic continuation $d=2 \rightarrow 4$ interpolate higher derivative gravity? [Stelle, 1976; Fradkin \& Tseyling, 1982; Avramidi \& Barvinsky, 1985...]

How to identify universality classes?

- Identify the symmetries of the system
- Identify a critical dimension d_{c}
- At d_{c} the perturbative expansion of the theory is controlled by a set of marginal operators.
- Require possible analytic continuation in some dimensional range

For a metric field content one has:

$$
\mathcal{O} \sim \mathcal{R}^{n} \quad d_{c}=2 n .
$$

- $d_{c}=2$ Kawai-Ninomiya universality class Kawai, Ninomiya, Aida, Kitazawa, Nishimura, Tsuchiya, ..., 1993-1997
- $d_{c}=4$ Stelle universality class Stelle, 1976
- $d_{c}=6$ Cubic gravity Knorr, 2021

Divergences in dimensional regularization

Consider a massive scalar ϕ^{4}-theory in 4 -dimensions

$$
\mu^{4-d} \int \frac{\mathrm{~d}^{d} k}{k^{2}+m^{2}}=\mu^{4-d}\left(\pi m^{2}\right)^{d / 2} \Gamma\left(1-\frac{d}{2}\right)
$$

Divergences in dimensional regularization

Consider a massive scalar ϕ^{4}-theory in 4 -dimensions

$$
\mu^{4-d} \int \frac{\mathrm{~d}^{d} k}{k^{2}+m^{2}}=\mu^{4-d}\left(\pi m^{2}\right)^{d / 2} \Gamma\left(1-\frac{d}{2}\right)
$$

Expanding in $\varepsilon=4-d$ one finds the following mapping between cut-off divergences and ε-poles

$$
\begin{aligned}
\log \Lambda & \leftrightarrow \frac{1}{\varepsilon} \\
\Lambda^{2} & \leftrightarrow 0 \\
\Lambda^{4} & \leftrightarrow 0
\end{aligned}
$$

Divergences in dimensional regularization

Consider a massive scalar ϕ^{4}-theory in 4 -dimensions

$$
\mu^{4-d} \int \frac{\mathrm{~d}^{d} k}{k^{2}+m^{2}}=\mu^{4-d}\left(\pi m^{2}\right)^{d / 2} \Gamma\left(1-\frac{d}{2}\right)
$$

Expanding in $\varepsilon=4-d$ one finds the following mapping between cut-off divergences and ε-poles

$$
\begin{aligned}
\log \Lambda & \leftrightarrow \frac{1}{\varepsilon} \\
\Lambda^{2} & \leftrightarrow \quad \frac{\mu^{2}}{\varepsilon^{(1)}} \\
\Lambda^{4} & \leftrightarrow
\end{aligned}
$$

Divergences in dimensional regularization

Consider a massive scalar ϕ^{4}-theory in 4 -dimensions

$$
\mu^{4-d} \int \frac{\mathrm{~d}^{d} k}{k^{2}+m^{2}}=\mu^{4-d}\left(\pi m^{2}\right)^{d / 2} \Gamma\left(1-\frac{d}{2}\right)
$$

Expanding in $\varepsilon=4-d$ one finds the following mapping between cut-off divergences and ε-poles

$$
\begin{aligned}
\log \Lambda \leftrightarrow & \frac{1}{\varepsilon^{L}} \\
\Lambda^{2} \leftrightarrow & \frac{\mu^{2}}{\varepsilon^{(L)}} \\
\Lambda^{4} \leftrightarrow & \frac{\mu^{4}}{\overline{\varepsilon^{(L)}}} \text { (vacuum diagrams) }
\end{aligned}
$$

where $\varepsilon^{(L)}=4-\frac{2}{L}-d$ and $\bar{\varepsilon}^{(L)}=4-\frac{4}{L}-d$. [Al-sarhi, Jack, Jones; ‘90-‘91]
The theory can be made finite for all dimensions $d<4$.

2d Gravity: an old puzzle

Linear splitting
(ex. Jack and Jones, 1990)

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+h_{\mu \nu}
$$

$$
S_{E}[g]=\int \mathrm{d}^{d} x \sqrt{g}\left\{g_{0}-g_{1} R\right\}
$$

central charge $=19$

$$
\beta_{G}=\varepsilon G-\frac{19}{24 \pi} G^{2}
$$

$$
\left\langle T_{\mu}^{\mu}\right\rangle \stackrel{\varepsilon \rightarrow 0}{=} \beta_{G}=?
$$

Exponential splitting (ex. Aida, Kitazawa, Kawai, Ninomiya, 1994)

$$
g_{\mu \nu}=\tilde{g}_{\mu \nu} \varphi^{\frac{4}{d-2}}=\bar{g}_{\mu \rho}\left(e^{h}\right)_{\nu}^{\rho} \varphi^{\frac{4}{d-2}}
$$

$$
\begin{aligned}
& S_{D}[\varphi, \tilde{g}]=-g_{1} \int \mathrm{~d}^{d} x \sqrt{\tilde{g}}\left\{\varphi^{2} \tilde{R}+\frac{1}{\xi_{c}} \tilde{g}^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi\right\} \\
&+g_{0} \int \mathrm{~d}^{d} x \sqrt{\tilde{g}} \varphi^{\frac{2 d}{d-2}} \\
& \xi_{c}=\frac{d-2}{4(d-1)} \Rightarrow \text { central charge }=25
\end{aligned}
$$

$$
\beta_{G}=\varepsilon G-\frac{25}{24 \pi} G^{2}
$$

2d Gravity: an old puzzle

Linear splitting
(ex. Jack and Jones, 1990)

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+h_{\mu \nu}
$$

$$
S_{E}[g]=\int \mathrm{d}^{d} x \sqrt{g}\left\{g_{0}-g_{1} R\right\}
$$

$$
\text { central charge }=19
$$

$$
\beta_{G}=\varepsilon G-\frac{19}{24 \pi} G^{2}
$$

$$
\left\langle T_{\mu}^{\mu}\right\rangle \stackrel{\varepsilon \rightarrow 0}{=} \beta_{G}=?
$$

Exponential splitting (ex. Aida, Kitazawa, Kawai, Ninomiya, 1994)

$$
g_{\mu \nu}=\tilde{g}_{\mu \nu} \varphi^{\frac{4}{d-2}}=\bar{g}_{\mu \rho}\left(e^{h}\right)_{\nu}^{\rho} \varphi^{\frac{4}{d-2}}
$$

$$
\begin{aligned}
& S_{D}[\varphi, \tilde{g}]=-g_{1} \int \mathrm{~d}^{d} x \sqrt{\tilde{g}}\left\{\varphi^{2} \tilde{R}+\frac{1}{\xi_{c}} \tilde{g}^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi\right\} \\
&+g_{0} \int \mathrm{~d}^{d} x \sqrt{\tilde{g}} \varphi^{\frac{2 d}{d-2}}+q \int \mathrm{~d}^{d} x \sqrt{\tilde{g}} \varphi \tilde{R} \\
& \xi_{c}=\frac{d-2}{4(d-1)} \Rightarrow \text { central charge }=25
\end{aligned}
$$

$$
\beta_{G}=\varepsilon G-\frac{25}{24 \pi} G^{2}
$$

Einstein-Hilbert gravity

Consider the Einstein-Hilbert action

$$
S_{E H}[g]=\int d^{d} x \sqrt{g}\left(g_{0}-g_{1} R\right)
$$

Diffeomorphism-invariance plays the role of a gauge symmetry: $\delta_{\zeta} g_{\mu \nu}=\nabla_{\mu} \zeta_{\nu}+\nabla_{\nu} \zeta_{\mu}$ We look at the parametrization dependence

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+h_{\mu \nu}+\frac{\lambda}{2} h_{\mu \rho} \bar{g}^{\rho \theta} h_{\theta \nu}+\mathcal{O}\left(h^{3}\right)
$$

and gauge dependence of the 1-loop divergences: $\delta_{\zeta} h_{\mu \nu}=\bar{g}_{\mu \rho} \bar{\nabla}_{\nu} \zeta^{\rho}+\bar{g}_{\nu \rho} \bar{\nabla}_{\mu} \zeta^{\rho}+o(h)$

$$
\begin{aligned}
S_{g f}[h ; \bar{g}] & =\frac{1}{2} \int d^{d} x \sqrt{\bar{g}} \bar{g}^{\mu \nu} F_{\mu} F_{\nu}, \\
F_{\mu} & =\bar{\nabla}_{\rho} h_{\mu}^{\rho}-\frac{1+\delta \xi}{2} \bar{\nabla}_{\mu} h_{\rho}^{\rho}, \\
S_{g h}[h, c, \bar{c} ; \bar{g}] & =\left.\int d^{d} x \sqrt{\bar{g}} \bar{c}^{\mu} \delta_{\zeta} F_{\mu}\right|_{\zeta \rightarrow c}
\end{aligned}
$$

Dimensions as symmetry parameter

In $d=2$ we have a discontinuity in the number of the degrees of freedom

$$
\begin{aligned}
& \frac{\delta^{2}}{\delta h_{\mu \nu} \delta h_{\alpha \beta}}\left(S_{E H}+S_{g f}\right)=-K^{\mu \nu \alpha \beta} \nabla^{2}+E^{\mu \nu \alpha \beta} \\
& K_{\mu \nu \alpha \beta}^{-1}=\frac{1}{2}\left(g_{\mu \alpha} g_{\nu \beta}+g_{\mu \beta} g_{\nu \alpha}-\frac{1}{d-2} g_{\mu \nu} g_{\alpha \beta}\right)
\end{aligned}
$$

The kinematic pole enters the structure of subdivergences in the loop expansion

Dimensions as symmetry parameter

In $d=2$ we have a discontinuity in the number of the degrees of freedom

$$
\begin{aligned}
& \frac{\delta^{2}}{\delta h_{\mu \nu} \delta h_{\alpha \beta}}\left(S_{E H}+S_{g f}\right)=-K^{\mu \nu \alpha \beta} \nabla^{2}+E^{\mu \nu \alpha \beta} \\
& K_{\mu \nu \alpha \beta}^{-1}=\frac{1}{2}\left(g_{\mu \alpha} g_{\nu \beta}+g_{\mu \beta} g_{\nu \alpha}-\frac{1}{d-2} g_{\mu \nu} g_{\alpha \beta}\right)
\end{aligned}
$$

The kinematic pole enters the structure of subdivergences in the loop expansion

Modified dimensional regularization

$$
\int \mathrm{d}^{2} x=\mu^{-\varepsilon} \int \mathrm{d}^{d} x \quad g_{\mu}^{\mu}=d \neq 2-\varepsilon
$$

Dimensions as symmetry parameter

In $d=2$ we have a discontinuity in the number of the degrees of freedom

$$
\begin{aligned}
& \frac{\delta^{2}}{\delta h_{\mu \nu} \delta h_{\alpha \beta}}\left(S_{E H}+S_{g f}\right)=-K^{\mu \nu \alpha \beta} \nabla^{2}+E^{\mu \nu \alpha \beta} \\
& K_{\mu \nu \alpha \beta}^{-1}=\frac{1}{2}\left(g_{\mu \alpha} g_{\nu \beta}+g_{\mu \beta} g_{\nu \alpha}-\frac{1}{d-2} g_{\mu \nu} g_{\alpha \beta}\right)
\end{aligned}
$$

The kinematic pole enters the structure of subdivergences in the loop expansion

Modified dimensional regularization

$$
\int \mathrm{d}^{2} x=\mu^{-\varepsilon} \int \mathrm{d}^{d} x \quad g_{\mu}^{\mu}=d \neq 2-\varepsilon
$$

d in $\operatorname{Diff}\left(\mathcal{M}_{d}\right)$ has a similar role to N in $S U(N)$ gauge theories

On-shell divergences

The 1-loop divergences in $d=2-\varepsilon$ can be arranged in the following way

$$
\begin{gathered}
\Gamma_{\mathrm{div}}^{1-l o o p}[0 ; \bar{g}]=\frac{\mu^{-\varepsilon}}{\varepsilon} \int \mathrm{d}^{d} x \sqrt{\bar{g}}\left\{A \bar{R}+J_{\mu \nu}\left(\bar{G}^{\mu \nu}+\frac{g_{0}}{2 g_{1}} \bar{g}^{\mu \nu}\right)\right\} \\
A=\frac{36+3 d-d^{2}}{48 \pi}, \quad J_{\mu \nu}=\frac{\bar{g}_{\mu \nu}}{4 \pi}\left\{\frac{d^{2}-d-4}{2(d-2)} \lambda-\delta \xi\left(2+\frac{2 \lambda}{d-2}\right)-d-1\right\}
\end{gathered}
$$

And the consequent β-function for $G_{N}=\frac{1}{g_{1}}$ is
[Falls, 2015; R.M. et al., 2021; Bastianelli et al., 2022]

$$
\begin{gathered}
\beta_{G}=\varepsilon G-\frac{36+3 d-d^{2}}{48 \pi} G^{2} \quad \rightarrow \quad \beta_{G}=-\frac{19}{24 \pi} G^{2} \\
G^{*}=-\frac{48 \pi(d-2)}{d^{2}-3 d-36} \quad \text { for } \quad d \lesssim 7.6
\end{gathered}
$$

The dilaton realization

We can repeat the same analysis for unimodular-dilaton action and postulate

$$
\Gamma_{\mathrm{div}}[0,0 ; \bar{g}, \bar{\varphi}]=\frac{\mu^{-\varepsilon}}{\varepsilon} \int \mathrm{d}^{d} x \sqrt{\bar{g}}\{B \bar{R}+J e\}
$$

e being the e.o.m. for $\bar{\varphi}$. However

$$
\begin{aligned}
B= & -\frac{11 d^{4}-44 d^{3}-78 d^{2}+180 d-72}{96 \pi d(d-1)} \\
& -\frac{(d-2)\left(18 d^{5}-35 d^{4}-132 d^{3}+152 d^{2}+48 d-48\right)}{192 \pi d^{3}(d-1)} \delta \beta, \\
J= & -\frac{3 d^{3}-6 d^{2}-12 d+16}{8 \pi d}-\frac{(d-2)\left(3 d^{2}-4\right)\left(2 d^{2}+d-2\right)}{16 \pi d^{3}} \delta \beta
\end{aligned}
$$

The dilaton realization

We can repeat the same analysis for unimodular-dilaton action and postulate

$$
\Gamma_{\mathrm{div}}[0,0 ; \bar{g}, \bar{\varphi}]=\frac{\mu^{-\varepsilon}}{\varepsilon} \int \mathrm{d}^{d} x \sqrt{\bar{g}}\{B \bar{R}+J e\}
$$

e being the e.o.m. for $\bar{\varphi}$. However

$$
\begin{aligned}
B= & -\frac{11 d^{4}-44 d^{3}-78 d^{2}+180 d-72}{96 \pi d(d-1)} \\
& -\frac{(d-2)\left(18 d^{5}-35 d^{4}-132 d^{3}+152 d^{2}+48 d-48\right)}{192 \pi d^{3}(d-1)} \delta \beta, \\
J= & -\frac{3 d^{3}-6 d^{2}-12 d+16}{8 \pi d}-\frac{(d-2)\left(3 d^{2}-4\right)\left(2 d^{2}+d-2\right)}{16 \pi d^{3}} \delta \beta
\end{aligned}
$$

- Not suitable for continuation away from $d=2$.
- As $d \rightarrow 2$ the volume operator $\lambda(\varphi)$ has a trivial scaling
- The topological charge has a non-trivial running proportional to $(d-2)$
- As $d \rightarrow 2$ we recover the known result $\beta_{G}=-\frac{25}{24 \pi} G^{2}$
- Choosing the scheme where e.o.m. are solved for the volume operator we recover $\beta_{G}=-\frac{19}{24 \pi} G^{2}$

Deformation of Einstein-Hilbert theory

Include higher derivative operators as composite:

$$
\begin{aligned}
S_{\mathrm{hd}}[g] & =\int \mathrm{d}^{d} x \sqrt{g}\left\{\alpha_{1} R_{\mu \nu \rho \sigma}^{2}+\alpha_{2} R^{2}+I_{2, \mu \nu} E[g]^{\mu \nu}\right\} \equiv-\vec{\alpha} \cdot \mathcal{R}_{2} \\
I_{2, \mu \nu} & =\alpha_{3} R g_{\mu \nu}+\alpha_{4} R_{\mu \nu}+\alpha_{5} \Lambda g_{\mu \nu} .
\end{aligned}
$$

Deformation of Einstein-Hilbert theory

Include higher derivative operators as composite:

$$
\begin{aligned}
S_{\mathrm{hd}}[g] & =\int \mathrm{d}^{d} x \sqrt{g}\left\{\alpha_{1} R_{\mu \nu \rho \sigma}^{2}+\alpha_{2} R^{2}+I_{2, \mu \nu} E[g]^{\mu \nu}\right\} \equiv-\vec{\alpha} \cdot \mathcal{R}_{2} \\
I_{2, \mu \nu} & =\alpha_{3} R g_{\mu \nu}+\alpha_{4} R_{\mu \nu}+\alpha_{5} \Lambda g_{\mu \nu}
\end{aligned}
$$

Divergences of effective action for the composite operator

$$
\Gamma_{\infty}[0, \alpha ; \bar{g}]=-\vec{\alpha}\left[\frac{1}{2} \operatorname{Tr} \frac{\delta^{2} \mathcal{R}_{2}}{\delta h_{\mu \nu} \delta h_{\rho \sigma}} G_{\rho \sigma \mu \nu}-\frac{g_{1}}{\varepsilon} J_{\mu \nu} \frac{\delta \mathcal{R}_{2}}{\delta h_{\mu \nu}}\right]_{h=0}
$$

Deformation of Einstein-Hilbert theory

Include higher derivative operators as composite:

$$
\begin{aligned}
S_{\mathrm{hd}}[g] & =\int \mathrm{d}^{d} x \sqrt{g}\left\{\alpha_{1} R_{\mu \nu \rho \sigma}^{2}+\alpha_{2} R^{2}+I_{2, \mu \nu} E[g]^{\mu \nu}\right\} \equiv-\vec{\alpha} \cdot \mathcal{R}_{2} \\
I_{2, \mu \nu} & =\alpha_{3} R g_{\mu \nu}+\alpha_{4} R_{\mu \nu}+\alpha_{5} \Lambda g_{\mu \nu} .
\end{aligned}
$$

Divergences of effective action for the composite operator

$$
\Gamma_{\infty}[0, \alpha ; \bar{g}]=-\vec{\alpha}\left[\frac{1}{2} \operatorname{Tr} \frac{\delta^{2} \mathcal{R}_{2}}{\delta h_{\mu \nu} \delta h_{\rho \sigma}} G_{\rho \sigma \mu \nu}-\frac{g_{1}}{\varepsilon} J_{\mu \nu} \frac{\delta \mathcal{R}_{2}}{\delta h_{\mu \nu}}\right]_{h=0}
$$

Reduce the system to only two operators with the aid of e.o.m.s

$$
\binom{\tilde{\beta}_{1}}{\tilde{\beta}_{2}}=\left(\begin{array}{ll}
\hat{\gamma}_{11} & \hat{\gamma}_{12} \\
\hat{\gamma}_{21} & \hat{\gamma}_{22}
\end{array}\right)\binom{\tilde{\alpha}_{1}}{\tilde{\alpha}_{2}}
$$

with eigenvalues $\left\{-\theta_{1},-\theta_{2}\right\}$ In $d=4$

$$
\begin{array}{ll}
v_{1}=(2,1), & \theta_{1}=0 \\
v_{2}=(0,1), & \theta_{2}=1
\end{array}
$$

Special cases: $d=2,3$

In $d=2$ one has the following identities

$$
R_{\mu \nu \rho \sigma}=\frac{R}{2}\left(g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right), \quad R_{\mu \nu}=\frac{R}{2} g_{\mu \nu}
$$

because of which α_{1} and α_{2} are not independent. Therefore

$$
\beta_{2}^{d=2}=\left(\beta_{1}+\beta_{2}\right)_{\alpha_{1}=0}^{d->2}
$$

We find the classical scaling for $\alpha_{2}: \theta=-2$.

Special cases: $d=2,3$

In $d=2$ one has the following identities

$$
R_{\mu \nu \rho \sigma}=\frac{R}{2}\left(g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right), \quad R_{\mu \nu}=\frac{R}{2} g_{\mu \nu}
$$

because of which α_{1} and α_{2} are not independent. Therefore

$$
\beta_{2}^{d=2}=\left(\beta_{1}+\beta_{2}\right)_{\alpha_{1}=0}^{d->2}
$$

We find the classical scaling for $\alpha_{2}: \theta=-2$.

In $d=3$

$$
R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}=4 R_{\mu \nu} R^{\mu \nu}-R^{2}
$$

and we have to consider

$$
\beta_{2}^{d=3}=\left(-\beta_{1}+\beta_{2}\right)_{\alpha_{1}=0}^{d->3}
$$

with critical exponent $\theta=-\frac{49}{108}$.

Conclusions and Outlook

Conclusions:

- Non trivial flow for G_{N} from poles in $d \rightarrow 2$
- finite size conformal window for the UV-fixed point
- Dilaton realization not suitable for analytic continuation $d \rightarrow 4$
- One relevant operator of order $\sim \mathcal{R}^{2}$

Conclusions and Outlook

Conclusions:

- Non trivial flow for G_{N} from poles in $d \rightarrow 2$
- finite size conformal window for the UV-fixed point
- Dilaton realization not suitable for analytic continuation $d \rightarrow 4$
- One relevant operator of order $\sim \mathcal{R}^{2}$

Outlook

- Test gauge dependence of composite operators
- Inspect $\sim \mathcal{R}^{3}$ operators
- Two-loop computations of Einstein-Hilbert gravity in $d=2+\varepsilon$ to prove renormalizability

Thank you!

Wave function renormalization

Given an action $S[g]$ for a field g_{x} over a background \bar{g}_{x} we have the functionals

$$
\begin{aligned}
& Z[j ; \bar{g}]=e^{W[j ; \bar{g}]}=\int \mathcal{D} h \exp \left\{-S[\bar{g}+h]+j_{x} h_{x}\right\}, \\
& \Gamma[H ; \bar{g}]=j_{x}[H] H_{x}-W[j[H]] \quad \text { with } \quad H_{x} \equiv \frac{\delta W[j]}{\delta J_{x}}=\left\langle h_{x}\right\rangle_{c}
\end{aligned}
$$

One loop approximation close to some critical dimension $d=d_{c}-\varepsilon$

$$
\begin{gathered}
\frac{1}{2} \operatorname{Tr} \log \bar{S}^{\prime \prime}=-\frac{1}{\varepsilon} \mathcal{J}_{x} \bar{S}_{x}^{\prime}+\frac{1}{\varepsilon} \Delta \Gamma_{\infty}+\Delta \Gamma_{f} \\
\Gamma[H ; \bar{g}]=\bar{S}+\bar{S}_{x}^{\prime}\left(H_{x}-\frac{1}{\varepsilon} \mathcal{J}_{x}\right)+\frac{1}{2} H_{x} \bar{S}_{x y}^{\prime \prime} H_{y}+\frac{1}{\varepsilon} \Delta \Gamma_{\infty}+\Delta \Gamma_{f}
\end{gathered}
$$

However $j_{x}[H]=0 \Leftrightarrow H_{x}=-G_{x y} \bar{S}_{y}^{\prime} \stackrel{\text { o.s. }}{=} 0$

$$
\Gamma[0 ; \bar{g}]=\bar{S}-\bar{S}_{x}^{\prime} \frac{1}{\varepsilon} \mathcal{J}_{x}+\frac{1}{\varepsilon} \Delta \Gamma_{\infty}+\Delta \Gamma_{f}
$$

Field redefinition

Change variable $\tilde{h}_{x}=h_{x}-\frac{1}{\varepsilon} \mathcal{J}_{x}$ and add the counterterm

$$
Z_{R}[j ; \bar{g}]=e^{\frac{1}{\varepsilon} \Delta \Gamma_{\infty}} \int \mathcal{D} \tilde{h} \exp \left\{-S\left[\bar{g}+\tilde{h}+\frac{1}{\varepsilon} \mathcal{J}\right]+j_{x} \tilde{h}_{x}\right\}
$$

We can read the renormalized equations of motion from the relation between j_{x} and \tilde{H}_{x}

$$
j_{x}[\tilde{H}]=\bar{S}_{x y}^{\prime \prime} \tilde{H}_{y}+\bar{S}_{x}^{\prime}+\frac{1}{\varepsilon} \bar{S}_{x y}^{\prime \prime} \mathcal{J}_{x}
$$

leading to

$$
\begin{gathered}
\Gamma_{R}[\tilde{H} ; \bar{g}]=\bar{S}+\Delta \Gamma_{f}+\tilde{H}_{x}\left(\bar{S}_{x}^{\prime}+\frac{1}{\varepsilon} \bar{S}_{x y}^{\prime \prime} \mathcal{J}_{y}\right)+\frac{1}{2} \tilde{H}_{x} \bar{S}_{x y}^{\prime \prime \prime} \tilde{H}_{y}+\frac{1}{2 \varepsilon^{2}} \mathcal{J}_{x} \bar{S}_{x y}^{\prime \prime} \mathcal{J}_{y} \\
\\
\Gamma_{R}[0 ; \bar{g}]=\bar{S}+\Delta \Gamma_{f}+\frac{1}{2 \varepsilon^{2}} \mathcal{J}_{x} \bar{S}_{x y}^{\prime \prime} \mathcal{J}_{y}
\end{gathered}
$$

Composite operators

We are interested in computing the expectation value of an operator $O[g]$

$$
\begin{aligned}
\langle O[g]\rangle & \equiv \int \mathcal{D} h O[\bar{g}+h] \exp \left\{-S[\bar{g}+h]+j_{x} h_{x}\right\} \\
& =\left.\left.\frac{\partial}{\partial \alpha}\right|_{\alpha=0} \int \mathcal{D} h \exp \left\{-S[\bar{g}+h]+\alpha O[\bar{g}+h]+j_{x} h_{x}\right\} \equiv \frac{\partial}{\partial \alpha}\right|_{\alpha=0} \exp \{W[j, \alpha ; \bar{g}]\}
\end{aligned}
$$

define

$$
\Gamma[H, \alpha ; \bar{g}]=H_{x} j_{x}-W[j, \alpha ; \bar{g}] \quad \Rightarrow \quad\langle O[\bar{g}+h]\rangle=-\left.\frac{\partial}{\partial \alpha}\right|_{\alpha=0} \Gamma\left[j^{-1}[0], \alpha, \bar{g}\right]
$$

Effectively the action is shifted $A[g]=S[g]-\alpha O[g]$

$$
\frac{1}{2} \operatorname{Tr} \log A^{\prime \prime}=\frac{1}{2} \operatorname{Tr} \log \left(\bar{S}^{\prime \prime}-\alpha \bar{O}^{\prime \prime}\right)=-\frac{1}{\varepsilon} \mathcal{J}_{x} \bar{S}_{x}^{\prime}+\frac{1}{\varepsilon} \Delta \Gamma_{\infty}^{O}+\Delta \Gamma_{f}^{O}
$$

Composite operators and wave function renormalization

$$
j_{x}[H]=\left(\bar{S}_{x y}^{\prime \prime}-\alpha \bar{O}_{x y}^{\prime \prime}\right) H_{y}+\bar{S}_{x}^{\prime}-\alpha \bar{O}_{x}^{\prime},
$$

leading to

$$
\begin{aligned}
\Gamma[H, \alpha ; \bar{g}]= & \bar{S}-\alpha \bar{O}+\left(H_{x}-\frac{1}{\varepsilon} \mathcal{J}_{x}\right) \bar{S}_{x}^{\prime}-\alpha H_{x} \bar{O}_{x}^{\prime}+\frac{1}{2} H_{x}\left(\bar{S}_{x y}^{\prime \prime}-\alpha \bar{O}_{x y}^{\prime \prime}\right) H_{y} \\
& +\frac{1}{\varepsilon} \Delta \Gamma_{\infty}^{O}+\Delta \Gamma_{f}
\end{aligned}
$$

Composite operators and wave function renormalization

$$
j_{x}[H]=\left(\bar{S}_{x y}^{\prime \prime}-\alpha \bar{O}_{x y}^{\prime \prime}\right) H_{y}+\bar{S}_{x}^{\prime}-\alpha \bar{O}_{x}^{\prime}
$$

leading to

$$
\begin{aligned}
\Gamma[H, \alpha ; \bar{g}]= & \bar{S}-\alpha \bar{O}+\left(H_{x}-\frac{1}{\varepsilon} \mathcal{J}_{x}\right) \bar{S}_{x}^{\prime}-\alpha H_{x} \bar{O}_{x}^{\prime}+\frac{1}{2} H_{x}\left(\bar{S}_{x y}^{\prime \prime}-\alpha \bar{O}_{x y}^{\prime \prime}\right) H_{y} \\
& +\frac{1}{\varepsilon} \Delta \Gamma_{\infty}^{O}+\Delta \Gamma_{f}
\end{aligned}
$$

- $H[0]=j^{-1}[0]=0 \quad \Leftrightarrow \quad \bar{S}_{x}^{\prime}=\alpha \bar{O}_{x}^{\prime}$

Then $-\frac{1}{\varepsilon} \mathcal{J}_{x} \bar{S}^{\prime} \rightarrow-\frac{\alpha}{\varepsilon} \mathcal{J}_{x} \bar{O}^{\prime}$ new counterterm to include

Composite operators and wave function renormalization

$$
j_{x}[H]=\left(\bar{S}_{x y}^{\prime \prime}-\alpha \bar{O}_{x y}^{\prime \prime}\right) H_{y}+\bar{S}_{x}^{\prime}-\alpha \bar{O}_{x}^{\prime}
$$

leading to

$$
\begin{aligned}
\Gamma[H, \alpha ; \bar{g}]= & \bar{S}-\alpha \bar{O}+\left(H_{x}-\frac{1}{\varepsilon} \mathcal{J}_{x}\right) \bar{S}_{x}^{\prime}-\alpha H_{x} \bar{O}_{x}^{\prime}+\frac{1}{2} H_{x}\left(\bar{S}_{x y}^{\prime \prime}-\alpha \bar{O}_{x y}^{\prime \prime}\right) H_{y} \\
& +\frac{1}{\varepsilon} \Delta \Gamma_{\infty}^{O}+\Delta \Gamma_{f}
\end{aligned}
$$

- $H[0]=j^{-1}[0]=0 \quad \Leftrightarrow \quad \bar{S}_{x}^{\prime}=\alpha \bar{O}_{x}^{\prime}$

Then $-\frac{1}{\varepsilon} \mathcal{J}_{x} \bar{S}^{\prime} \rightarrow-\frac{\alpha}{\varepsilon} \mathcal{J}_{x} \bar{O}^{\prime}$ new counterterm to include

- Shift H_{x} as before to take care of \mathcal{J}_{x}

Then $-\alpha H_{x} \bar{O}_{x}^{\prime} \rightarrow-\alpha \tilde{H}_{x} \bar{O}_{x}^{\prime}-\frac{\alpha}{\varepsilon} \mathcal{J}_{x} \bar{O}^{\prime}$ new counterterm

Composite operators and wave function renormalization

$$
j_{x}[H]=\left(\bar{S}_{x y}^{\prime \prime}-\alpha \bar{O}_{x y}^{\prime \prime}\right) H_{y}+\bar{S}_{x}^{\prime}-\alpha \bar{O}_{x}^{\prime}
$$

leading to

$$
\begin{aligned}
\Gamma[H, \alpha ; \bar{g}]= & \bar{S}-\alpha \bar{O}+\left(H_{x}-\frac{1}{\varepsilon} \mathcal{J}_{x}\right) \bar{S}_{x}^{\prime}-\alpha H_{x} \bar{O}_{x}^{\prime}+\frac{1}{2} H_{x}\left(\bar{S}_{x y}^{\prime \prime}-\alpha \bar{O}_{x y}^{\prime \prime}\right) H_{y} \\
& +\frac{1}{\varepsilon} \Delta \Gamma_{\infty}^{O}+\Delta \Gamma_{f}
\end{aligned}
$$

- $H[0]=j^{-1}[0]=0 \quad \Leftrightarrow \quad \bar{S}_{x}^{\prime}=\alpha \bar{O}_{x}^{\prime}$

Then $-\frac{1}{\varepsilon} \mathcal{J}_{x} \bar{S}^{\prime} \rightarrow-\frac{\alpha}{\varepsilon} \mathcal{J}_{x} \bar{O}^{\prime}$ new counterterm to include

- Shift H_{x} as before to take care of \mathcal{J}_{x}

Then $-\alpha H_{x} \bar{O}_{x}^{\prime} \rightarrow-\alpha \tilde{H}_{x} \bar{O}_{x}^{\prime}-\frac{\alpha}{\varepsilon} \mathcal{J}_{x} \bar{O}^{\prime}$ new counterterm

$$
\begin{aligned}
\frac{\langle O\rangle}{\langle 1\rangle}=-\left.\frac{\partial}{\partial \alpha} \Gamma_{R}[0, \alpha ; \bar{g}]\right|_{\alpha=0}= & \bar{O}+\frac{1}{2 \varepsilon^{2}} \mathcal{J}_{x} \bar{O}_{x y}^{\prime \prime} \mathcal{J}_{y}-\left.\frac{\partial}{\partial \alpha} \Delta \Gamma_{f}^{O}\right|_{\alpha=0} \\
& \bar{S}_{x}^{\prime}+\frac{1}{\varepsilon} \bar{S}_{x y}^{\prime \prime} \mathcal{J}_{x}=0
\end{aligned}
$$

