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Some motivations for models with CSI

Motivation 1: origin of mass and EW symmetry breaking

Most of the mass of the matter we see has a dynamical origin

Example: the proton mass →

Is it possible to generate all the mass dynamically? If yes, with MEW ≪MPl?

Motivation 2: predictivity

CSI gives a strong restriction on the possible theories, which can lead to testable
predictions. E.g. a realistic theory of this type can only be formulated in 4D: a gauge
theory in higher dimensions necessarily includes dimensionful parameters in the action
Ô⇒ explanation of the observed number of dimensions.

Motivation 3: first-order phase transitions

If symmetries are broken and masses are generated radiatively one always has
first-order phase transition with corresponding observable gravitational waves and
primordial black holes.
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Classical Scale Invariance in the press

For an outreach article on CSI see
[Natalie Wolchover
for Quanta Magazine (2014)]

For Quanta Magazine (Simons Foundation)

The quantum breaking of scale invariance we need is similar to the Coleman-Weinberg
(CW) mechanism, but here we need a gravitational generalization

https://www.quantamagazine.org/to-avoid-the-multiverse-physicists-propose-a-symmetry-of-scales-20140818/
https://www.quantamagazine.org/to-avoid-the-multiverse-physicists-propose-a-symmetry-of-scales-20140818/
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The Coleman-Weinberg mechanism

▸ The CW mechanism (1973) is a perturbative way to generate a mass through
quantum corrections in the absence of gravity

▸ These effects can be captured by the effective potential Veff

▸ One requires the existence of an (approximately) flat direction in the tree-level
potential: if such direction did not exist we would expect the radiative corrections
to be negligible with respect to the slope of the tree-level potential

▸ Essentially this means that a quartic coupling λCW of a scalar, ϕCW, has to
vanish at some scale µCW: then ϕCW is an (approximate) flat direction:

V CW
eff = λCW(ϕCW)ϕ4

CW + constant ≃ constant for ϕCW ≈ µCW

▸ The CW idea was later extended to generic theories (but still without gravity) by
[Gildener, S. Weinberg (1976)]:

L ns
matter = −

1

4
FAµνF

Aµν + DµφaD
µφa

2
+ ψ̄ji /Dψj −

1

2
(Y aijψiψjφa+h.c.)−Vns(φ),

with

Vns(φ) =
λabcd

4!
φaφbφcφd

http://inspirehep.net/record/81406
https://inspirehep.net/literature/3207


Gravitational generalizations of the CW mechanism (Agravity)

The general Lagrangian including gravity and a generic matter sector is

L = R2

6f2
0

− W
2

2f2
2

− ξab
2
φaφbR +L ns

matter

(we call this theory agravity)

These gravitational terms should be added:
If not added to the classical Lagrangian they are generated by quantum effects.

Once they are added the gravitational sector is also renormalizable

Non-gravitational sector: L ns
matter −

ξab
2
φaφbR = L SM

4 +L BSM
4

▸ L SM
4 is the Standard Model (SM) L (without µ2

H ∣H ∣2/2 plus −ξH ∣H ∣2R):

▸ L BSM
4 describes beyond the Standard Model (BSM) physics.

⟨s⟩ generates the EW scale

↗

adding a scalar s → L BSM
4 = ...+λHSs2∣H ∣2/2 − ξSs2R/2

↙
Agravity sector

⟨s⟩ generates M̄Pl: ξSs
2R → M̄2

Pl = ξS⟨s⟩2
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Conditions for the gravitational CW mechanism

Agravity successfully generates the Planck scale if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λs(s) ≃ 0 ↔ nearly vanishing cosmological constant (dark energy)

λ′s(s) = 0 ↔ minimum condition

ξs(s) > 0 then we identify ξs(s)s2 = M̄2
Pl

s generates the Planck scale, so we call it the “Planckion”

It is possible to satisfy these conditions as they are realized in the physics we know
(the SM)!
↘
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Non-perturbative generations of scales

Alternatively all scales can be induced by a new gauge group GTC that becomes
non-perturbative around the Planck scale, such that condensates are generated.
[Adler (1982)], [Salvio, Strumia (2017)], [Donoghue, Menezes (2017)],
[Kubo, Lindner, Schmitz, Yamada (2018)]

Cosmological constant

gΜΝ

TC

Planck mass

gΜΝ gΜΝ

TC

Higgs mass

H HH

gΜΝ gΜΝ

TC

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.54.729
http://inspirehep.net/record/1599065
http://inspirehep.net/record/1643002
https://inspirehep.net/literature/1703606


The Higgs mass Mh can be naturally much smaller than M̄Pl

’t Hooft definition: a physical quantity is naturally small when setting it to zero leads
to enhanced symmetry.

This ensures that quantum corrections respect the smallness of the physical quantity

The theory is renormalizable

Ô⇒ one can consistently compute the quantum corrections δMh to the Higgs mass:

δM2
h ∼

M̄2
Plf

4
i

(4π)2

, δM2
h ≲M2

h → f2 ≲
√

4πMh

M̄Pl

∼ 10−8

[Salvio, Strumia (2014)]

http://inspirehep.net/record/1286134


The Higgs mass Mh can be naturally much smaller than M̄Pl

’t Hooft definition: a physical quantity is naturally small when setting it to zero leads
to enhanced symmetry.

This ensures that quantum corrections respect the smallness of the physical quantity

The theory is renormalizable

Ô⇒ one can consistently compute the quantum corrections δMh to the Higgs mass:

δM2
h ∼

M̄2
Plf

4
i

(4π)2
, δM2

h ≲M2
h → f2 ≲

√
4πMh

M̄Pl

∼ 10−8

[Salvio, Strumia (2014)]

http://inspirehep.net/record/1286134


Agravity is a realization of “softened gravity”

(Einstein) gravitational interactions increase with energy

Idea (softened gravity):

consider theories where the increase
of the gravitational coupling →
stops at some ΛG ≪MPl.

Λ��� �� Λ� ��� → ∞ ������

�����

���-������������

�������� �������⟶

↙ �������� �������

The gravitational contribution to the Higgs mass is

δM2
h ∼

GNΛ4
G

(4π)2

Requiring δMh ∼Mh → ΛG ≲ 1011 GeV [Giudice, Isidori, Salvio, Strumia (2014)]

(for such tiny couplings the Higgs field acquires an approximate shift symmetry that
protects Mh)

Still the cosmological constant Λ is not naturally equal to the observed value.
One should look for another independent mechanism to explain its value.

http://arxiv.org/pdf/1412.2769.pdf
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What happens above M̄Pl? Clash between asymptotic freedom and
stability

(4π)2 df2
2

d ln µ̄
= −f4

2(133

10
+ NV

5
+
Nf

20
+ Ns

60
)

(4π)2 df2
0

d ln µ̄
= 5

3
f4
2 + 5f2

2 f
2
0 +

5

6
f4
0 +

f4
0

12
(δab + 6ξab)(δab + 6ξab)

↓

▸ f2
2 is asymptotically free for f2

2 > 0 (no problem with f2
2 > 0)

▸ f2
0 is asymptotically free only for f2

0 < 0

f2
0 < 0 corresponds to a tachyonic scalar ω with squared mass M2

0 ∼ f2
0 M̄

2
Pl

The potential of the effective scalar ω that corresponds to the term R2/6f2
0 :
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What happens above M̄Pl? Asymptotic safety can save us
Strumia and AS (2017) showed that, when f0 →∞ in the infinite energy limit,
f0 does not hit any Landau pole, provided that

▸ All scalars have asymptotically Weyl-invariant (ξab = −δab/6) couplings

▸ All other couplings approach fixed points

So agravity can flow to a Weyl-invariant theory, “conformal gravity”, at infinite energy.
The requirement of fixed points increases even further the predictivity

▸ A possibility is the quasi-conformal scenario

Λ��� �� �� ��� → ∞ ������
����

�����

���-������������

���
��

��
�+�ξ

�������� ������� �����-��������� �������
In this case
ΛG =M2

▸ Otherwise, if f−1
0 and 1+ 6ξ are large at observable energies, ΛG = max(M0,M2)

Since agravity flows to conformal gravity in the UV and the FRW metric is
conformally flat, the initial-time cosmological singularity of GR is avoided

http://inspirehep.net/record/1599065
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UV behavior and spectrum of agravity

▸ Agravity is renormalizable (clear from the absence of fundamental scales)
and rigorously proved by Stelle (1977) in the presence of M̄Pl

(see also a more recent proof of Barvinsky, Blas, Herrero-Valea, Sibiryakov and
Steinwachs (2017))

▸ Furthermore, it can be extended up to infinite energy if there is a UV fixed point
[Salvio, Strumia (2017)], predicting transplanckian physics [Salvio, Strumia,
Veermae (2018)], and can address the hierarchy problem as we have seen

However, looking at the classical spectrum [Stelle (1977)]:

(i) massless graviton

(ii) scalar z with mass M2
0 ∼ 1

2
f2
0 M̄

2
Pl

(iii) massive spin-2 field with an abnormal-sign kinetic term (ghost) and
squared mass M2

2 = 1
2
f2
2 M̄

2
Pl

This abnormal graviton is associated with W2

2f2
2

.

(iii) is the manifestation of the Ostrogradsky theorem (1848): classical Lagrangians
that depend non-degenerately on the second derivatives have Hamiltonians unbounded
from below

http://inspirehep.net/record/110537
https://inspirehep.net/record/1598745
https://inspirehep.net/record/1598745
http://inspirehep.net/record/1599065
http://inspirehep.net/record/1691226
http://inspirehep.net/record/1691226
http://inspirehep.net/record/110537
http://inspirehep.net/record/1468685
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squared mass M2

2 = 1
2
f2
2 M̄

2
Pl

This abnormal graviton is associated with W2

2f2
2

.

(iii) is the manifestation of the Ostrogradsky theorem (1848): classical Lagrangians
that depend non-degenerately on the second derivatives have Hamiltonians unbounded
from below

http://inspirehep.net/record/110537
https://inspirehep.net/record/1598745
https://inspirehep.net/record/1598745
http://inspirehep.net/record/1599065
http://inspirehep.net/record/1691226
http://inspirehep.net/record/1691226
http://inspirehep.net/record/110537
http://inspirehep.net/record/1468685


Ghost problem: proceeding perturbatively

Let us split the metric gµν as follows:

gµν = g
cl
µν + ĥµν

▸ gcl
µν is a classical background that solves the classical EOMs

▸ ĥµν is a quantum fluctuation



Classical theory

Can we avoid the possible Ostrogradsky instabilities?

▸ Recall that in the free-field limit

Hghost = − ∑
λ=±2,±1,0

∫ d3q [P̃ 2
λ + (q2 +M2

2 )Q̃2
λ]

Despite the minus sign a decoupled ghost does not suffer from instabilities
(that sign cancels in the equations of motion (EOMs))

▸ Effective field theory arguments tell us that at energies below M2 we should not
find runaways even if the abnormal graviton has an order one coupling f2 ∼ 1

▸ The intermediate case 0 < f2 < 1 must have intermediate energy thresholds
(above which the runaways are activated)

▸ The weak coupling case f2 ≪ 1 (compatible with Higgs naturalness) must have
an energy thresholds much larger than M2:
we could see the effect of the abnormal graviton without runaways

This argument can be made precise in classical quadratic gravity (the theory with
quadratic-in-curvature terms we have). The whole cosmology can only involve
energies below this threshold and avoid runaways

→ “metastability in quadratic gravity”

[Salvio (2019)] see also [dos Reis, Chapiro, Shapiro (2019)] and [Gross, Strumia,
Teresi, Zerilli (2020)]

http://inspirehep.net/record/1722053
https://arxiv.org/abs/1903.01044
https://arxiv.org/abs/2007.05541
https://arxiv.org/abs/2007.05541
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This can be shown with a two-derivative formulation
One separates the two-derivative d.o.f.: ω, ordinary and abnormal gravitons

————————————————————————————————————

First perform the field redefinition gµν →
M̄2

Pl

f
gµν , f ≡ M̄2

Pl −
2R

3f2
0

> 0,

(where the Ricci scalar above is computed in the Jordan frame metric) that gives

S = ∫ d4x
√−g (−W

2

2f2
2

−
M̄2

Pl

2
R +LE

m) “Einstein frame action”

The Einstein-frame matter Lagrangian, LE
m , also contains an effective scalar ω (a.k.a.

the scalaron), which corresponds to the R2 term in the Jordan frame:

LE
ω = (∂ω)2

2
−U(ω), U(ω) =

3f2
0 M̄

4
Pl

8
(1 − e−2ω/

√
6M̄Pl)

2

————————————————————————————————————
To make the abnormal graviton explicit consider an auxiliary field γµν :

S = ∫ d4x
√−g[

M2
2 M̄

2
Pl

8
(γµνγµν − γ2) −

M̄2
Pl

2
Gµνγ

µν −
M̄2

Pl

2
R +LE

m]

where Gµν is the Einstein tensor and γ ≡ γµνgµν .

One has a mixing between hµν ≡ gµν − ηµν and γµν . The tensors h̄µν = hµν + γµν
and γµν represent the ordinary and abnormal gravitons



Interactions of the abnormal graviton and energy thresholds

The two-derivative formulation is good to understand the abnormal graviton
interactions. First, one can easily see that they are suppressed by f2

Next,
M2

2
8

(γµνγµν − γ2) leads to mass and interaction terms of the schematic form

M2
2

2
(φ2

2 +
φ3

2

M̄Pl

+
φ4

2

M̄2
Pl

+ ...) ,

(φ2 represents the canonically normalized spin-2 fields)

The mass term has the same order of magnitude of the interactions for φ2 ∼ M̄Pl,
which gives M2

2φ
2
2/2 =M4

2 /f2
2 ≡ E4

2 , where

E2 ≡
M2√
f2

=
√

f2

2
M̄Pl

For energies E ≪ E2 the Ostrogradsky instabilities are avoided

This bound applies to the boundary conditions (BCs) of derivatives of the spin-2 fields.

Analogously, one can show that the energy E in the matter sector must satisfy

E ≪ Em Em ≡ 4
√
f2M̄Pl (matter sector)

(one has to impose it on the BCs)



Relations with chaotic inflation [Linde (1983)]

For a natural Higgs mass (f2 ∼ 10−8, M2 ∼ 1010 GeV)

E2 ∼ 10−4M̄Pl, Em ∼ 10−2M̄Pl

It is clear that inflation (and the preceding epoch) is the only stage of the universe
that can provide us information about such high scales.

Note that the ghost is completely inactive in an FRW metric
⇓

only perturbations that break homogeneity/isotropy may destabilize the universe

But we live in one of those patches where the energy scales of inhomogeneities (Ei)
and anisotropies (Ea) were small enough:

Ei ≪ ∣U ′
I/I ∣1/2, Ei,Ea ≪ HI

these conditions justify the use of homogeneous and isotropic solutions to describe the
classical part of inflation (Linde’s idea)

The chaotic theory automatically ensures that the conditions to avoid runaway
solutions are satisfied.

The fatal runaways above the energy thresholds give an
(anthropic) rationale for a homogeneous and isotropic universe
(verified for Starobinsky, hilltop, natural, Higgs inflation and other models)

http://inspirehep.net/record/196244
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Let us go back to the the following metric splitting

gµν = g
cl
µν + ĥµν

▸ gcl
µν is a classical background that solves the classical EOMs.

▸ ĥµν is a quantum deviation



Can a different quantization help?

Recall that the classical Dirac theory of fermions has arbitrarily negative energies
and the problem is solved by a different quantization

Can we hope that something similar happens for gravitons?

Yes, renormalizability implies that the quantum Hamiltonian governing ĥµν is
bounded from below [Stelle (1977)]

However, the space of states must be endowed with an indefinite metric (with respect
to which the “position” q and “momentum” p operators are self-adjoint).

Then the presence of an indefinite metric leads to the question:

How can we define probabilities consistently?

https://journals.aps.org/pr/abstract/10.1103/PhysRev.79.145


A derivation of probability
▸ Define observable any operator A with complete eigenstates {∣a⟩} [Salvio

(2018)]: for any state ∣ψ⟩ there is a decomposition

∣ψ⟩ =∑
a

ca∣a⟩

One can show that the basic operators q, p and the Hamiltonian have complete
eigenstates at any order in perturbation theory

▸ Interpret ∣a⟩ as the state where A assumes certainly the value αa
(call it the deterministic Born rule)

Experimentalists prepare a large number N of times the same state, so consider

∣ΨN ⟩ ≡ νN ∣ψ⟩...∣ψ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= ∑
a1...aN

νN ca1 ... caN ∣a1⟩...∣aN ⟩, ν ≡ 1
√
∑b ∣cb∣2

N times
Define a frequency operator Fa which counts the number Na of times there is the
value a in the state ∣a1⟩...∣aN ⟩:

Fa∣a1⟩...∣aN ⟩ ≡ Na
N

∣a1⟩...∣aN ⟩

One can show that lim
N→∞

Fa∣ΨN ⟩ = Ba∣ΨN ⟩, Ba ≡
∣ca∣2

∑b ∣cb∣2

(all coefficients in the basis ∣a1⟩...∣aN ⟩ converge to the same quantities)

The probabilities are positive and sum up to one at any time (the theory is unitary)

http://inspirehep.net/record/1670205
http://inspirehep.net/record/1670205
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The emergent norms to compute probabilities

{∣a⟩} is complete so we can define a “norm” operator PA:

⟨a′∣PA∣a⟩ ≡ δaa′

where for any pair of states ∣ψ1⟩, ∣ψ2⟩, we denote the indefinite metric with ⟨ψ2∣ψ1⟩.
The definition above provides a positive metric (a norm):

⟨ψ2∣ψ1⟩A ≡ ⟨ψ2∣PA∣ψ1⟩ =∑
a

c∗a2ca1

(which is positive for ∣ψ1⟩ = ∣ψ2⟩)

Ba ≡
∣c2a∣
∑b ∣c2b ∣

= ∣⟨a∣ψ⟩A∣2

⟨ψ∣ψ⟩A
We recover the full probabilistic Born rule, but expressed in terms of the positive norm
not in terms of the indefinite one



Dirac-Pauli (DP) quantization of canonical variables
[Dirac (1941); Pauli (1943); Salvio, Strumia (2015); Salvio (2020)]

A is normal with respect to the A-norm ⇒ A = Ah +Aa, where Ah (Aa) is an
(anti)Hermitian operator with respect to the A-norm and [Ah,Aa] = 0.

So we restrict to

A∣a⟩ = λa∣a⟩, λa = αa or λa = iαa (with αa real)

In quadratic gravity there are also observables that realize the second possibility:
the canonical coordinates Q,P (with [Q,P ] = i) of the abnormal graviton.

This is the only option which allows a Hamiltonian of the form

Ĥ = −1

2
(P 2 + ω2

QQ
2)

to have a spectrum bounded from below and normalizable eigenfunctions

Q∣x⟩ = ix∣x⟩, P ∣x⟩ = d

dx
∣x⟩

http://rspa.royalsocietypublishing.org/content/180/980/1
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.15.175
http://arxiv.org/pdf/1512.01237.pdf
https://arxiv.org/pdf/2012.11608.pdf


Phase transitions (PTs), gravitational waves (GWs) and
primordial black holes (PBHs) in CSI theories

All CSI theories where symmetries are broken (and masses are then generated)
radiatively feature strong and long first-order PTs, which lead to

▸ GWs

▸ PBHs
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Radiative symmetry breaking (RSB) mechanism
To illustrate this general result we consider the general L ns

matter

In the RSB mechanism masses emerge radiatively: there is an energy µ̃ at which Vns

develops a flat direction, φa = νaχ, with νaνa = 1, and χ a single scalar field
Ô⇒ RG-improved potential V along νa reads

V (χ) = λχ(µ)
4

χ4, (λχ(µ) ≡
1

3!
λabcd(µ)νaνbνcνd, λχ(µ̃) = 0)

Including the one-loop correction the quantum effective potential can always be
written

Vq(χ) =
β̄

4
(log

χ

χ0
− 1

4
)χ4,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λχ(µ̃) = 0 (flat direction),

β̄ ≡ [µ dλχ
dµ

]
µ=µ̃

> 0 (minimum condition),

The fluctuations of χ around χ0 have mass

mχ =
√
β̄ χ0

χ0 ≠ 0 can break global and/or local symmetries and generate the particle masses.
E.g. a term in L of the form

Lχh =
1

2
λχh(µ̃)χ2∣H ∣2

can contribute to electroweak (EW) symmetry breaking
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Thermal effective potential and PT

Veff(χ,T ) = Vq(χ) +
T 4

2π2

⎛
⎝∑b

nbJB(m2
b(χ)/T 2) − 2∑

f

JF (m2
f (χ)/T 2)

⎞
⎠
+Λ0

The thermal functions JB and JF are

JB(x) ≡ ∫
∞

0
dpp2 log (1 − e−

√
p2+x) = −π

4

45
+ π

2

12
x − π

6
x3/2 − x

2

32
log( x

aB
) +O(x3),

JF (x) ≡ ∫
∞

0
dpp2 log (1 + e−

√
p2+x) = 7π4

360
− π

2

24
x − x

2

32
log( x

aF
) +O(x3),

The PT associated with a RSB always turns out to be of first order! [Salvio (2023)]
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Supercooling and model-independent approach

As long as perturbation theory holds, for all CSI theories, when T < Tc the scalar field
χ is trapped in the false vacuum ⟨χ⟩ = 0 until T is much below Tc, in other words the
universe features a phase of supercooling [Witten (1981); Salvio (2023)]

Explanation: If the theory is scale invariant Γ must scale as T 4 and, therefore, the
smaller T , the smaller Γ. At quantum level scale invariance is broken by perturbative
loop corrections, which introduce another dependence of T in the bounce action. This
dependence, however, is logarithmic and can become large only when T is very small
compared to the other scale of the problem, χ0.

If enough supercooling occured a model-independent approach is possible!
[Salvio (2023) I; Salvio (2023) II]

The amount of supercooling needed is quantified by

ε ≡ g4

6β̄ log χ0
T

,

with
g2 ≡∑

b

nbm
2
b(χ)/χ2 +∑

f

m2
f (χ)/χ2
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Small ε case [Salvio (2023) I]
V̄eff(χ,T ) ≡ Veff(χ,T ) − Veff(0, T ) ≈ m

2(T )
2

χ2 − λ(T )
4

χ4

m2(T ) ≡ g
2T 2

12
, λ(T ) ≡ β̄ log

χ0

T

Γ ≈ T 4 ( S3

2πT
)

3/2

exp(−S3/T ), with S3 = −8π∫
∞

0
dr r2V̄eff(χ,T )

where χ is the time-independent bounce configuration:

χ′′ + 2

r
χ′ = dV̄eff

dχ
, χ′(0) = 0, lim

r→∞
χ(r) = 0

one finds S3 ≈ c3mλ with c3 = 18.9... and for λ = 1→

χ/m

-r2 V eff /m
2

0 1 2 3 4 5
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4

r m

The time-independent bounce

The nucleation temperature defined as the solution of Γ = HI is

Tn ≈ χ0 exp
⎛
⎝

√
c2 − 16a − c

8

⎞
⎠
, with a ≡ c3g√

12β̄
, c ≡ 4 log

4
√

3M̄Pl√
β̄ χ0

One always has a very strong PT and a small inverse duration β:
β

Hn
≈ a

log2(χ0/Tn)
−4

Corrections are easily computable in a small-ε expansion

https://inspirehep.net/literature/2635102
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ε ∼ 1

. Simple case: several d.o.f. with dominant couplings to χ

The formulæ we have seen in the small ε case still hold
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ε ∼ 1. General case [Salvio (2023) II]

V̄eff(χ,T ) ≈ m
2(T )
2

χ2 − k(T )
3

χ3 − λ(T )
4

χ4, with k(T ) ≡ g̃
3T

4π

and
g̃3 ≡∑

b

nbm
3
b(χ)/χ3

The relation between Γ and S3

we have seen still holds, but

S3 = −
8πm3

k2 ∫
∞

0
dρρ2 (1

2
ϕ2 − 1

3
ϕ3 − λ̃

4
ϕ4)

where

ϕ ≡ kχ

m2
and λ̃ ≡ λm

2

k2
> 0
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ε ∼ 1. General case: nucleation temperature Tn

Tn can be numerically computed once and for all as the solution λ̃n of

a1 − a2λ̃ = F (λ̃) ≡ 1 + exp(−1/
√
λ̃)

2/9 + λ̃
, where a1 ≡

c c3k
2

3πa β̄ m2
, a2 ≡

4c3k
4

3πa β̄2m4
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0.8
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1.2

The inset in the right plot gives the maximal value of a2 for a given a1 such that λ̃n exists



ε ∼ 1. General case: inverse duration β.

Imposing g̃ = g and ε < 3

β

Hn
≈ π3g5

6
√

3g̃8

(4π)2β̄

g̃4
(−F ′(λ̃n)) − 4
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Gravitational waves

h2ΩGW(f) ≈ 1.29×10−6 (Hr
β

)
2

( 100

g∗(Tr)
)

1/3 3.8(f/fpeak)2.8

1 + 2.8(f/fpeak)3.8

fpeak ≈ 3.79
β

Hr
(g∗(Tr)

100
)

1/6
Tr

108GeV
Hz



Gravitational waves: peak frequency

The peak frequency as a function of g and β̄ in the case of fast reheating and fixing

g∗(Tr) = 110. Also, g̃ = g and ε < 3 has been imposed.



Gravitational waves: comparison with experiments
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Regions corresponding to the GW background detected by pulsar timing arrays. In both plots

χ0 = 10 GeV, g∗(Tr) = 110 and fast reheating is assumed. Here ε < 3 has been imposed.
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fast reheating is assumed. Here ε < 3 has been imposed.



Primordial black holes

Late-blooming mechanism: Since the bubble formation process is statistical for both
quantum and thermal reasons, distinct causal patches percolate at different times.
Patches that percolate the latest undergo the longest vacuum-dominated stage and,
therefore, develop large over-densities triggering their collapse into PBHs (see
e.g. [Gouttenoire, Volansky (2023)])
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Density plots giving the values of β/Hn varying g and β̄. On the lower dashed line the whole dark

matter is due to PBHs generated through the late-blooming mechanism (fPBH = 1); the upper

dashed line corresponds instead to fPBH = 10−10. Here g̃ = g and ε < 3 has been imposed.
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Conclusions

▸ A dynamical origin for all masses via dimensional transmutation

▸ high predictivity

▸ The masses can be generated perturbatively and/or non-perturbatively

▸ A general theory with CSI is renormalizable (even in the gravity sector) and can
solve the hierarchy problem if f2 ≲ 10−8, at the price of a ghost. Is the
cosmological constant fine tuned?

▸ Both the classical and quantum problems created by the ghost can be solved but
using a perturbative approach. Non-perturbative formulation?

▸ Naturalness imply that the ghost is below 1010 GeV and can, therefore, be tested
with cosmological data

▸ All CSI theories where symmetries are broken (and masses are then generated)
radiatively feature strong and long first-order PTs, which lead to

▸ observable GWs

▸ PBHs that can account for a fraction or the entire dark matter
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Thank you very much for your attention!
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