Pathways to UV Complete Quantum Field Theories

Holger Gies

Friedrich-Schiller-Universität Jena & Helmholtz-Institut Jena

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

& Luca Zambelli, Marta Picciau, Julian Schirrmeister

Rene Sondenheimer, Alessandro Ugolotti, Jobst Ziebell, Kevin K.K. Tam, Philip Heinzel, Johannes Laufkötter

"UV Complete Quantum Field Theories for Particle Physics" | 4 - 6 September 2023 | San Miniato

Perfect Theories?

▷ e.g., classical mechanics of point particles

 $m\mathbf{a} = \mathbf{F}$

I. Newton, L. Euler

Perfect Theories?

▷ e.g., classical mechanics of point particles

$m\mathbf{a} = \mathbf{F}$

I. Newton, L. Euler

BUT: no intrinsic knowledge about validity regimes,

e.g., $|\mathbf{v}| \ll c, S \gg \hbar$

A "superpower" of quantum field theories

▷ e.g., QED: perturbation theory predicts its own failure

$\triangleright \beta$ function:

$$eta_{e^2} = \partial_t e^2 = +eta_0 e^4$$

▷ integration:

$$rac{1}{e_R^2}-rac{1}{e_\Lambda^2}=eta_0\,\lnrac{\Lambda}{m_{
m R}},\quadeta_0=rac{N_{
m f}}{6\pi^2}$$

 $\triangleright e_R^2 \text{ and } m_R \text{ fixed:} \implies \Lambda \rightarrow \mu_L \simeq m_R \exp\left(\frac{1}{\beta_0 e_R^2}\right) \simeq 10^{272} \text{GeV}$ (2 loop)

Landau pole singularity

 \Rightarrow QED: world's best tested theory & maximum validity scale

(LANDAU'55)

A purely academic "superpower" ...?

 Higgs mass bounds in the Standard Model from Landau pole position

(HAMBYE, RIESSELMANN'97)

▷ Landau Pole in Standard Model

 $\mu_{
m L,\,MSSM}\simeq 10^{20}\,{
m GeV}$ $\mu_{
m L,\,MSSM+4H}\simeq 10^{17}\,{
m GeV}$

A Truly Perfect Theory

▷ e.g., Quantum Chromodynamics

 \implies predicts the long-range/low-energy physics & could be valid on any scale

Classification of (perturbatively) renormalizable QFTs

D = 3 + 1

assumptions: Lorentz invariance, locality, unitarity,
 (perturbative) renormalizability (\$\exists predictivity) + implicit assumptions

spin	S_{int}	particle physics	UV complete?
0	ϕ^4	Higgs scattering	
1/2	$ar{\psi}\psi\phi$	fermion-Higgs interactions	
1/2	$ar{\psi}\gamma_{\mu} {m A}_{\mu}\psi$	gauge interactions	
1	$f^{abc}A^a_\mu A^b_ u \partial_\mu A^c_ u$ $f^{abc}f^{ade}A^a_\mu A^b_ u A^d_\mu A^e_ u$	gluon self-interactions	
3/2	_	_	
2	_	graviton ?	

Classification of (perturbatively) renormalizable QFTs

> assumptions: Lorentz invariance, locality, unitarity, (perturbative) renormalizability (\triangleq predictivity) + implicit assumptions

spin	S _{int}	particle physics	UV complete?
0	ϕ^{4}	Higgs scattering	✓/×
1/2	$ar{\psi}\psi\phi$	fermion-Higgs interactions	✓/ ×
1/2	$ar{\psi}\gamma_{\mu} {m {\cal A}}_{\mu}\psi$	gauge interactions	✓/ X
1	$f^{abc}A^a_\mu A^b_ u \partial_\mu A^c_ u$ $f^{abc}f^{ade}A^a_\mu A^b_ u A^d_\mu A^e_ u$	gluon self-interactions	\checkmark
3/2	_	_	×
2	_	graviton ?	×

(Implicit) Assumptions

▷ (perturbative) renormalizability

beyond: asymptotic safety

▷ (conventional) canonical scaling

beyond: higher-derivative theories

▷ (simple) boundary conditions for generating functionals

beyond: global potential flows, general b.c.'s, "asymptotic flatness"

A U(1) example: the Pauli-QED universality class

Necessity of Renormalizability

• IR physics well separated from UV physics

(...no/mild cutoff Λ dependence)

• # of physical parameters $\Delta < \infty$

 \ldots or countably ∞

(... predictive power)

 \implies ...and by "Asymptotic Safety"

(Weinberg'76)

(Gell-Mann, Low'54)

linearized RG flow:

$$\partial_t g = -\Theta(g - g_*) + \dots$$

UV repulsive, "irrelevant" $\Theta < 0$

UV attractive, "relevant" $\Theta > 0$

 $\Delta = \dim \mathcal{S} = \# \Theta' s > 0$

(# phys. parameters $< \infty$ (universality & predictivity

Strong QED?

▷ Could asymptotic safety make QED UV complete?

Strong QED?

▷ Could asymptotic safety make QED UV complete?

▷ Lattice+FRG: no UV fixed point in pure QED, but even if ...

Strong QED?

▷ Could asymptotic safety make QED UV complete?

 $\triangleright \chi$ SB leads to heavy fermions $m \sim \Lambda$ if $\alpha > \alpha_{cr} \simeq 3.06$

 \implies Strong QED and "real" QED not on a line of constant physics

(Gockeler et al.'98; HG, Jaeckel'04)

Other universality classes?

▷ observation in EFT:

(DJUKANOVIC, GEGELIA, MEISSNER'18)

$$\Gamma \sim \int \bar{\kappa} \bar{\psi} \sigma_{\mu
u} F^{\mu
u} \psi$$

 \implies finite Pauli coupling $\bar{\kappa}$ can screen the Landau pole

Can Pauli coupling be UV stabilized?

New universal class including finite Pauli coupling?

Status of chiral symmetry?

QED RG flow with Pauli term

▷ effective action to lowest order derivative expansion

(HG,Ziebell'20)

$$\Gamma_{k} = \int_{x} \left[\bar{\psi} \left(i Z_{\psi} \partial \!\!\!/ + \bar{e} A - i \bar{m} + i \bar{\kappa} \sigma_{\mu\nu} F^{\mu\nu} \right) \psi + \frac{1}{4} Z_{A} F_{\mu\nu} F^{\mu\nu} \right]$$

▷ Pauli coupling in QED:

unique lowest-derivative dimension-5 operator

QED RG flow with Pauli term

▷ effective action to lowest order derivative expansion

 $\Gamma_{k} = \int_{x} \left[\bar{\psi} \left(i Z_{\psi} \partial \!\!\!/ + \bar{e} A \!\!\!/ - i \bar{m} + i \bar{\kappa} \sigma_{\mu\nu} F^{\mu\nu} \right) \psi + \frac{1}{4} Z_{A} F_{\mu\nu} F^{\mu\nu} \right]$

 \triangleright RG flow for all dim'less couplings $e, m \sim \frac{\bar{m}}{k}, \kappa \sim \bar{\kappa}k, Z_{\psi}, Z_A$

e.g.

$$\partial_{t}e = e\left(\frac{d}{2} - 2 + \eta_{\psi} + \frac{\eta_{A}}{2}\right) - 4v_{d}\frac{(d-4)(d-1)}{d}e^{3}l_{d}^{(1,B,\tilde{F}^{2})}(0,m^{2}) \\ -16v_{d}\frac{(d-2)(d-1)}{d}e\kappa^{2}l_{d}^{(2,B,\tilde{F}^{2})}(0,m^{2}) - 16v_{d}\frac{(d-4)(d-1)}{d}e\kappa^{2}m^{2}l_{d}^{(2,B,F^{2})}(0,m^{2}) \\ -32v_{d}\frac{d-1}{d}e^{2}\kappa m l_{d}^{(1,B,\tilde{F})}(0,m^{2},m^{2}) - 4v_{d}\frac{(d-2)(d-1)}{d}e^{3}m^{2}l_{d}^{(B,F^{2})}(0,m^{2})$$

$$\triangleright$$
 similarly for $\partial_t \kappa = \dots, \partial_t m = \dots, \eta_A = \dots, \eta_\psi = \dots$

(HG,ZIEBELL'20)

Phase diagram of QED

Universality classes of QED

0.6

	е	κ	т	multiplicity	Δ	Θ_{\max}	η_ψ	η_{A}
\mathcal{A} :	0	0	0	_	1	1.00	0.00	0.00
\mathcal{B} :	0	5.09	0.328	$\mathbb{Z}_2 imes \mathbb{Z}_2$	2	3.10	-1.38	0.53
\mathcal{C} :	0	3.82	0	\mathbb{Z}_2	3	2.25	-1.00	0.00

"Pauli" universality class $\mathcal C$

 $\triangleright \Delta = 3$ physical parameters

also a_e needs to be tuned

▷ Do physical RG trajectories (compatible with Nature) exist?

Physical trajectories in Pauli universality class?

 \implies Yes!

Check: dim-6 operators irrelevant (HG,TAM'23)

Crossover scale in Pauli universality class

▷ crossover scale:

scale where RG flow deviates from perturbative flow

$$rac{\Lambda_{
m c}}{m_e}\simeq 4.6 imes 10^5, \qquad \Lambda_c\simeq 23.7\,{
m GeV}$$

 \sim scale where electroweak contributions start to dominate

embedding into standard model?

Pauli coupling \rightarrow dimension-6 operator

Higher derivative theories

Relativistic Luttinger fermions and asymptotic freedom

An inspiration from solid state physics

▶ Luttinger'56:

Quantum theory of cyclotron resonance in semiconductors: general theory

"The most general form of the Hamiltonian ... "

$$H\psi = G_{ij}(\partial_i - ieA_i)(\partial_j - ieA_j)\psi = E\psi$$

generalization of covariant Laplacian to symmetric inter-band couplings

Luttinger fermions in nonrelativistic field theory

Effective field theory of low energy degrees of freedom near quadratic band touching/crossing points (QBT/QBC):

$$\mathcal{L}=\psi^{\dagger}\left(\partial_{ au}-G_{ij}\,\partial_{i}\partial_{j}
ight)\psi+\mathcal{L}_{ ext{int}}$$

 \triangleright For $(-G_{ij} \partial_i \partial_j)^2 = (-\partial^2)^2$, the G_{ij} satisfy a Clifford algebra

(ABRIKOSOV'74)

(Abrikosov, Beneslavskii'71)

(IANSSEN.HERBUT'15)

$$\{G_{ij}, G_{kl}\} = -rac{2}{d-1}\delta_{ij}\delta_{kl} + rac{d}{d-1}(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})$$

cond-mat applications:

- $-j = \frac{3}{2}$ Luttinger semi-metals
- nematic quantum criticality
- Bernal-stacked honeycomb bilayers
- gapless spin liquids

(Luttinger'56) (Janssen,Herbut'15) (Ray,Vojta,Janssen'18) (Dey,Macieiko'22)

[FIGURE: DOI.ORG/10.1039/C8TC04813D]

Dirac vs. Luttinger fermions

Dirac algebra:

Luttinger algebra:

$$\{\gamma_i, \gamma_j\} = 2\delta_{ij}\mathbb{1}$$

$$\{G_{ij}, G_{kl}\} = \left[-\frac{2}{d-1}\delta_{ij}\delta_{kl} + \frac{d}{d-1}\left(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}\right)\right]\mathbb{1}$$

▷ A simple example in (Euclidean) 2d:

Dirac operator:

$$\partial = \gamma_i \partial_i$$

representation $\gamma_1 = \sigma_1, \gamma_2 = \sigma_3$:

$$\boldsymbol{\vartheta} = \begin{pmatrix} \partial_2 & \partial_1 \\ \partial_1 & -\partial_2 \end{pmatrix}$$

Luttinger operator:

 $G_{ij}\partial_i\partial_j$

representation $G_{12} = G_{21} = \sigma_1$, $G_{11} = -G_{22} = \sigma_3$:

$$G_{ij}\partial_i\partial_j = \begin{pmatrix} \partial_1^2 - \partial_2^2 & \partial_1\partial_2 \\ \partial_1\partial_2 & -\partial_1^2 + \partial_2^2 \end{pmatrix}$$

Relativistic Luttinger fermions?

(HG,Heinzel,Laufkötter,Piccau to appear)

Clifford algebra

$$\{G_{\mu\nu},G_{\kappa\lambda}\}=-\frac{2}{d-1}g_{\mu\nu}g_{\kappa\lambda}+\frac{d}{d-1}(g_{\mu\kappa}g_{\nu\lambda}+g_{\mu\lambda}g_{\nu\kappa}), \quad g=\text{diag}(+,-,-,-,\dots)$$

▶ kinetic action:

$$S=-\int d^d x\,ar{\psi}\,G_{\mu
u}\partial^\mu\partial^
u\,\psi$$

Relativistic Luttinger fermions?

(HG,Heinzel,Laufkötter,Piccau to appear)

Clifford algebra

$$\{G_{\mu\nu},G_{\kappa\lambda}\}=-\frac{2}{d-1}g_{\mu\nu}g_{\kappa\lambda}+\frac{d}{d-1}(g_{\mu\kappa}g_{\nu\lambda}+g_{\mu\lambda}g_{\nu\kappa}), \quad g=\operatorname{diag}(+,-,-,-,\dots)$$

▷ kinetic action:

$${\cal S}=-\int d^d x\,ar\psi\, G_{\mu
u}\partial^\mu\partial^
u\,\psi$$

 \triangleright **BUT** what is $\bar{\psi}$?

$$egin{pmatrix} {\sf Dirac:} & ar{\psi}=\psi^\dagger\gamma_0 \end{pmatrix}$$

 \triangleright Also: cond-mat generalization to d = 4 Euclidean dimensions:

(JANSSEN, HERBUT'15)

time reversal: $T^2 = +1$ spinless fermions

Properties of the Luttinger algebra

 \triangleright $G_{\mu\nu}$: representation in terms of $d_{\gamma} \times d_{\gamma}$ matrices for each fixed $\mu, \nu = 0, 1, 2, \dots, d-1$

 \triangleright $G_{\mu\nu} = G_{\nu\mu}$ symmetric in Lorentz indices

 \triangleright Lorentz-traceless: tr_L $G_{\mu\nu} \equiv G^{\mu}{}_{\mu} = 0$

... excludes the trivial Klein-Gordon part $\sim \partial^2$

 \implies number of independent elements d_{e} :

d	2	3	4	5	6
$d_{\rm e}$	2	5	9	14	20
d_γ	2	4	16	128	1024

 $\begin{pmatrix} \mathsf{Dirac:} & d_{\mathsf{e}} = d \end{pmatrix}$

Construction of the conjugate spinor

▷ Unitary time evolution requires a real action, suggesting:

 $ar{\psi}=\psi^{\dagger}\,\mathbf{h}$

▷ Spin metric *h* acts as a "hermitizer", i.e. action is spin-base invariant (Schrödinger'32;Bargman'32)

$$\psi o \mathcal{S}\psi, \quad G_{\mu
u} o \mathcal{S}G_{\mu
u}\mathcal{S}^{-1}, \quad \mathcal{S}\in \mathrm{SL}(d_\gamma,\mathbb{C}),$$

provided that spin metric transforms as

(Weldon'00; HG,Lippoldt'13)

$$h
ightarrow (\mathcal{S}^{\dagger})^{-1} h \mathcal{S}^{-1}$$

 \implies for a given set of $G_{\mu\nu}$'s, spin metric must be constructed from the Clifford algebra

$$egin{pmatrix} \mathsf{Dirac:} & h=\gamma_0 \end{pmatrix}$$

Construction of the conjugate spinor

 \triangleright action $\in \mathbb{R}$ (unitarity) requires:

$$\{h, G_{0i}\} = 0, \quad [h, G_{ij}] = 0, \quad [h, G_{\underline{\mu}\underline{\mu}}] = 0$$

 \implies no solution in irreducible $d_{\gamma} = 16$ dimensional representation!

Construction of the conjugate spinor

ightarrow action $\in \mathbb{R}$ (unitarity) requires:

$$\{h, G_{0i}\} = 0, \quad [h, G_{ij}] = 0, \quad [h, G_{\mu\mu}] = 0$$

 \implies no solution in irreducible $d_{\gamma} = 16$ dimensional representation!

 \triangleright BUT: spin metric exists in $d_{\gamma} = 32$ dimensional representation, e.g.

 $h = \gamma_1 \gamma_2 \gamma_3 \gamma_{10}$

 \implies action is Lorentz invariant as

 $\mathcal{S}_{\mathsf{Lor}} \in \mathsf{SO}(1,3) \subset \mathsf{SL}(32,\mathbb{C})$

 $\mathcal{S}_{ ext{Lor}}$ together with $\Lambda^{\mu}{}_{
u}$ maps $G_{\mu
u} o G_{\mu
u}$

Free theory of relativistic Luttinger fermions

▷ action

$$S=\int d^4x\left(ar{\psi}~G_{\mu
u}\left(i\partial^{\mu}
ight)\!\left(i\partial^{
u}
ight)\psi-m^2\,ar{\psi}\psi
ight)$$

 \implies Lorentz invariant and spin-base SL(32, \mathbb{C}) invariant

▷ canonical mass dimension

$$[\psi] = 1$$

 \sim like a scalar field in d = 3 + 1

 $\implies \sim (ar{\psi}\psi)^2$ -type self-interactions can be marginal

Free theory of relativistic Luttinger fermions

action

$$S=\int d^4x\left(ar{\psi}~G_{\mu
u}\left(i\partial^{\mu}
ight)\!\left(i\partial^{
u}
ight)\psi-m^2\,ar{\psi}\psi
ight)$$

 \implies Lorentz invariant and spin-base SL(32, \mathbb{C}) invariant

▷ canonical mass dimension

$$[\psi] = 1$$

 \sim like a scalar field in d = 3 + 1

 $\implies \sim (\bar{\psi}\psi)^2 \text{-type self-interactions can be marginal}$ > NOTE: there are $\binom{10}{0} + \binom{10}{1} + \binom{10}{2} + \binom{10}{3} + \dots = 1024$ independent bilinears

only 16 for Dirac fermions

 $ightarrow \sim$ "Gross-Neveu-Thirring"-type model:

$$\mathcal{S}[\psi,ar{\psi}] = \int d^4x \left[ar{\psi} G_{\mu
u}(i\partial^\mu)(i\partial^
u)\psi + rac{ar{\lambda}_0}{2}(ar{\psi}\psi)^2 + rac{ar{\lambda}_t}{2}(ar{\psi} G_{\mu
u}\psi)^2
ight]$$

▷ renormalization flow:

(Wetterich'93)

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)} + R_k} \partial_t R_k$$

 \triangleright renormalized coupling flow (point-like truncation), e.g., for $N_{\rm f} = 1$

$$\begin{aligned} \partial_t \lambda_0 &= -\frac{1}{8\pi^2} \left[30 \,\lambda_0^2 - \frac{88}{3} \,\lambda_0 \,\lambda_t \right] \\ \partial_t \lambda_t &= -\frac{1}{8\pi^2} \left[-\frac{486}{9} \lambda_t^2 + \frac{16}{9} \,\lambda_0 \,\lambda_t - \frac{1}{6} \lambda_0^2 \right] \end{aligned}$$

- $Dash N_{
 m f} =$ 1 phase diagram of the model: $(\eta_{\psi} \sim \lambda_i^2, {
 m LPA}:
 ightarrow 0)$
- ⇒ Gaußian fixed point: attractive & repulsive
- \implies asymptotically free for
 - $\lambda_0>0, \quad \lambda_t<0$

 \implies UV complete \checkmark & long-range interacting

- $Dash N_{
 m f} =$ 1 phase diagram of the model: $(\eta_{\psi} \sim \lambda_i^2, {
 m LPA}:
 ightarrow 0)$
- ⇒ Gaußian fixed point: attractive & repulsive
- \implies asymptotically free for
 - $\lambda_0>0, \quad \lambda_t<0$

 \implies UV complete \checkmark & long-range interacting

 $an lpha = rac{\lambda_0}{\lambda_t}$

- channel competition scalar vs. tensor channel
- ▷ quantum phase transition ?
 - $lpha_{
 m cr}\simeq-46^\circ$

 \triangleright long-range order?

 \Rightarrow Luttinger gauge theories

(TALK: M. PICCIAU)

Luttinger numerology

> Observation relativistic QFT with Luttinger fermions requires a 32-component spinor

▷ Dirac fermions in each family:

u-type :	3	(color)
d-type :	3	(color)
e-like :	1	
u :	1	(incl. right-handed)
sum:	8	Dirac fermions

 \Rightarrow 32 components

General boundary conditions, "Asymptotic Flatness"

Paving the way to asymptotically free gauge-Higgs models

▷ backbone of particle physics:

UV behavior of central interest

▷ perturbative RG analysis

• deep Euclidean region (DER)

 $\frac{m^2,p_i^2}{\mu^2}\ll 1$

- no threshold phenomena
- "asymptotic symmetry" (LEE,WEISBERGER'74)
- only marginal operators

asymptotic freedom: (Gross,Wilczek'73; Cheng,Eichten,Lee'74; Chang'74;...; Guidice,Isidori,Salvio,Strumia'14,...) asymptotic safety: (Litim,Sannino'14; Bond,Litim'16; Bond,Litim,MedinaVazquez,Steudtner'18; Held'20; ...)

▷ backbone of particle physics:

UV behavior of central interest

perturbative RG analysis

• deep Euclidean region (DER)

 $\frac{m^2,p_i^2}{\mu^2}\ll 1$

- no threshold phenomena
- "asymptotic symmetry" (LEE,WEISBERGER'74)
- only marginal operators

functional RG analysis

- beyond DER
- threshold phenomena included

- any symmetry status
- functional flow: $U(\phi)$

asymptotic freedom: (Gross,Wilczek'73; Cheng,Eichten,Lee'74; Chang'74;...; Guidice,Isidori,Salvio,Strumia'14,...) asymptotic safety: (Litim,Sannino'14; Bond,Litim'16; Bond,Litim,MedinaVazquez,Steudtner'18; Held'20; ...)

Example: \mathbb{Z}_2 -Yukawa-QCD model

▷ perturbative RG flow: asymptotic freedom through "gauge trapping": $h^2 \sim g_s^2$ $\lambda \sim g_s^2$ for $g_s \rightarrow 0$ 0.1 0.0

 \implies enhanced predictive power:

for fixed Λ_{QCD} , v_{Fermi} :

 $m_{\rm top}, m_{\rm Higgs}$ is a prediction

(Pendleton,Ross'81)

(CHENG, EICHTEN, LEE'74)

▷ generalize "gauge trapping" to "quasi fixed points" (QFP):

(HG, ZAMBELLI'15,'16)

$$\frac{h^2/g_s^2}{\lambda/g_s^2} \left. \begin{array}{l} UV \\ \to \\ \end{array} \right\} \quad \stackrel{UV}{\to} \text{const.}, \quad x := \frac{1}{2}h\phi^2 \sim g_s\phi^2, \quad f(x) := \frac{U(\phi)}{k^4}$$

▷ generalize "gauge trapping" to "quasi fixed points" (QFP):

$$\frac{h^2/g_s^2}{\lambda/g_s^2} \left. \right\} \quad \stackrel{UV}{\to} \text{const.}, \quad x := \frac{1}{2}h\phi^2 \sim g_s\phi^2, \quad f(x) := \frac{U(\phi)}{k^4}$$

(HG, ZAMBELLI'15,'16)

▷ global analytic approximation:

$$f(x) = \frac{1}{128\pi^2} {}_2F_1\left(1, -\frac{4}{2+\eta_x}, \frac{-2+\eta_x}{2+\eta_x}, -3\xi_2hx\right) - \frac{3}{32\pi^2} {}_2F_1\left(1, -\frac{4}{2+\eta_x}, \frac{-2+\eta_x}{2+\eta_x}, -hx\right) + C_f x^{\frac{4}{2+\eta_x}},$$

▷ functional RG: 2nd order PDE requires boundary conditions!

$$f(x) = \frac{1}{128\pi^2} {}_2F_1\left(1, -\frac{4}{2+\eta_x}, \frac{-2+\eta_x}{2+\eta_x}, -3\xi_2 hx\right) - \frac{3}{32\pi^2} {}_2F_1\left(1, -\frac{4}{2+\eta_x}, \frac{-2+\eta_x}{2+\eta_x}, -hx\right) + \frac{C_f x^{\frac{4}{2+\eta_x}}}{2+\eta_x},$$

New asymptotically free scaling solutions in $\mathbb{Z}_2\text{-}\mathsf{Yukawa}\text{-}\mathsf{QCD}$

(HG,Sondenheimer,Ugolotti,Zambelli'18)

 \implies cf. new scaling solution in nonlinear electrodynamics (TALK: J. SCHIRRMEISTER)

Asymptotic Flatness

Asymptotic Flatness

(HG.ZAMBELLI'15'16)

Conclusion

• QFT "superpower":

prediction of maximum validity scale Λ

• For $\Lambda \to \infty$: QFT can be "perfect"

classification of UV complete theories

pathways to UV complete QFTs

asymptotic freedom/safety 🗹

higher derivative theories: e.g. Luttinger fermions \checkmark

boundary conditions & asymptotic flatness \checkmark

• UV complete theories = consistent theories

consistency: relevant criterion (in absence of data)