Nuclear emulsion detectors for colliders, dark matter search and medical physics

Giuliana Galati Università di Bari Aldo Moro & INFN Bari

Nuclear emulsion detectors for colliders, dark matter search and medical physics

Giuliana Galati Università di Bari Aldo Moro & INFN Bari

HOW DO THEY WORK

Main difference w.r.t. photographic films

- The ratio of silver halide to gelatine is up to ten times larger in nuclear emulsions (higher sensitivity)
- Nuclear emulsion is typically from 10 to 100 times thicker (3D reconstruction)
- Developed silver grains are smaller and more uniform

Image taken using OPERA emulsion film with pinhole handmade camera by Donato Di Ferdinando

- 1. Ionization induced by a particle
 - 2.6 eV band gap

- 1. Ionization induced by a particle
 - 2.6 eV band gap

- 1. Ionization induced by a particle
 - 2.6 eV band gap
- 2. Electrons trapped at a lattice defect on the crystal surface
 - Attract interstitial silver ions
 - Produce a "latent image" = Ag_n

- 1. Ionization induced by a particle
 - 2.6 eV band gap
- 2. Electrons trapped at a lattice defect on the crystal surface
 - Attract interstitial silver ions
 - Produce a "latent image" = Ag_n

- 1. Ionization induced by a particle
 - 2.6 eV band gap
- 2. Electrons trapped at a lattice defect on the crystal surface
 - Attract interstitial silver ions
 - Produce a "latent image" = Ag_n

- 1. Ionization induced by a particle
 - 2.6 eV band gap
- 2. Electrons trapped at a lattice defect on the crystal surface
 - Attract interstitial silver ions
 - Produce a "latent image" = Ag_n
- 3. Chemical amplification of signal
 - Development \rightarrow silver filaments
 - 10⁷ 10⁸ amplification

- 1. Ionization induced by a particle
 - 2.6 eV band gap
- 2. Electrons trapped at a lattice defect on the crystal surface
 - Attract interstitial silver ions
 - Produce a "latent image" = Ag_n
- 3. Chemical amplification of signal
 - Development \rightarrow silver filaments
 - 10⁷ 10⁸ amplification

- 1. Ionization induced by a particle
 - 2.6 eV band gap
- 2. Electrons trapped at a lattice defect on the crystal surface
 - Attract interstitial silver ions
 - Produce a "latent image" = Ag_n
- 3. Chemical amplification of signal
 - Development \rightarrow silver filaments
 - 10⁷ 10⁸ amplification
- 4. Dissolve crystals

- 1. Ionization induced by a particle
 - 2.6 eV band gap
- 2. Electrons trapped at a lattice defect on the crystal surface
 - Attract interstitial silver ions
 - Produce a "latent image" = Ag_n
- 3. Chemical amplification of signal
 - Development \rightarrow silver filaments
 - 10⁷ 10⁸ amplification
- 4. Dissolve crystals
- 5. Observe it at optical microscopes

- 1. Ionization induced by a particle
 - 2.6 eV band gap
- 2. Electrons trapped at a lattice defect on the crystal surface
 - Attract interstitial silver ions
 - Produce a "latent image" = Ag_n
- 3. Chemical amplification of signal
 - Development \rightarrow silver filaments
 - 10⁷ 10⁸ amplification
- 4. Dissolve crystals
- 5. Observe it at optical microscopes

Nuclear Emulsion chemical composition

- Standard emulsions composition: AgBr + gelatin
- Gelatine provides a 3D substrate to locate the crystals of silver halide and prevent them to migrate during the chemical development: keep the original position

	Element	Mass fraction
OPERA TIIMS	Ag	0.3834
	Br	0.2786
	I	0.0081
	С	0.13
	Ν	0.0481
	0	0.1243
	Н	0.024
	S	0.001
	Si	0.001
	Na	0.001
	К	0.0005
	Grain dimens	ion: ~ 200 nm

e elements
e elements
ig structure
lise the crystal grow

Grain dimension after development: $\sim 20-45$ nm

Film production

Sensitization

Au+S sensitization → tuning of the sensitivity (grains/µm at a given dE/dx)

Nuclear emulsions development

- Develop
- Stop
- Fix
- Wash
- Glycerine

• Dry

Emulsions in a particle physics experiment

Used to instrument the target region of experimental apparatus in order to study the properties of the incoming particles and/or the interaction products

Two techniques:

- "Bulk": target fully made of emulsion films (visualizer detector), old fashion
- Emulsion Cloud Chamber (ECC): target made of passive material interleaved with nuclear emulsions acting as trackers with micrometric resolution (vertex detector with additional performance depending on the structure), modern way

Fermilab DONUT experiment discovers $u_{ au}$

Bulk emulsions

Particles || to the emulsions

Particles \perp to the emulsions

300 µm

300 µm

Emulsion Cloud Chamber

- Nuclear emulsions interleaved with passive material
- \bullet Particles \perp to emulsions
- Higher interaction probability: compact and relatively cheap target with large masses (low fluxes and/or cross-sections)
- Momentum measurement through the detection of the multiple Coulomb scattering in passive materials
- Electromagnetic shower identification
- Hybrid setup is used to provide the time stamp and to restrict the analysis region, when needed

ECC tracks' reconstruction

ECC tracks' reconstruction

ECC tracks' reconstruction

AT THE ORIGINS OF NUCLEAR EMULSIONS

Nuclear emulsion technology: the birth

- 1896 Bequerel (Nobel Prize in 1903) discovers the radioactivity by observing the blackening of photographic films due to uranium salts: he accidentally placed a uranium ore on top of a photographic plate. After several experiments, he concluded that this was due to uranium emission different from X-rays
- 1910 Kinoshita observes tracks of α particles
- 1925 Marietta Blau optimised nuclear emulsions for detecting low-energy protons
- Important developments of the emulsion sensitivity in 1930s and 1940s thanks to the Bristol group led by Powell who developed films sensitive to electrons (Nobel Prize in 1950)

Nuclear emulsion technology: developments

- After the Second World War, very active collaboration between academic groups and photographic industries (Kodak, Ilford)
- 1970s and 1980s: With the development of electronic detectors, emulsions are less used
- Revolution in the readout technique in the late 1980s. In the 1990s fully automated optical microscopes for the readout provide a revival of the technology

Nuclear emulsion technology: current era

- 2000s: the era of the OPERA experiment, the largest ever emulsion experiment with an industrial production of films by the Fuji Film Company (110000 m²)
- 2010: technology established and OPERA provides its unique results. Faster scanning system are developed
- Present: New era with nanometric films for nanometric accuracy: breakthrough in the readout technologies. Thanks to ultra-fast scanning systems and nanometric accuracy new enterprises are possible: NEWSdm, SHiP and SND and other experiments

Nuclear emulsions scanning lab in Naples

The Discovery of the Pion

- Cosmic ray study on an airplane at about 9km of altitude and at Pic du Midi
- 600 µm thick emulsion with a new kind of gelatine to register the passage of ionizing particles
- Powell used these emulsions to solve the mystery of the Yukawa meson in 1947
- Powell got the Nobel Prize in 1950. The Committee underlined the simplicity of the detector used.

Lattes, Muirhead, Occhialini and Powell, OBSERVATIONS ON THE TRACKS OF SLOW MESONS IN PHOTOGRAPHIC EMULSIONS, Nature 159 (1947) 694.

First observation of "charmed" hadrons

A possible decay in flight of a new type particle Niu et al., Prog.Theor.Phys.46 (1971) 1644-1646.

First observation of "beauty" hadron decay

Two particles with "beauty" quark content are produced and decay (10⁻¹² s) producing "charmed" particles that in turn decay

Petrera, Romano, NIM 174 (1980) 61 Direct Observation of the decay of Beauty particles into charm particles, PLB 158 (1985) 186, WA75 experiment at CERN

Diffractive Ds production in CHORUS

Phys. Lett. B435 (1998) 458, CHORUS experiment at CERN

First observation of the associated charm production in neutrino CC interactions

Phys. Lett B 539 (2002) 188, CHORUS Experiment at CERN

μ

The τ / θ **paradox** $\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \qquad \theta^+ \rightarrow \pi^+ \pi^0$

The τ / θ **paradox** $\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \qquad \theta^+ \rightarrow \pi^+ \pi^0$

Antonio Rostagni (left) and Michelangelo Merlin (right) with an English collaborator supervising the construction of the G-Stack weather balloon in the attic of the Physics Institute of Padua

G-Stack

63 kg of nuclear emulsions!

Discovery of the neutrino(s)

1930 - W. Pauli «invented a particle that cannot be detected» 1956 - Experimental discovery of the **electron** neutrino (Nobel Prize 1995)

1962 - Discovery of muon neutrino

1991 - Indirect evidence that there are only 3 types of neutrinos

2000 - Discovery of tau neutrino

Discovery of the neutrino(s)

1930 - W. Pauli «invented a particle that cannot be detected» 1956 - Experimental discovery of the **electron** neutrino (Nobel Prize 1995)

1962 - Discovery of muon neutrino

- 1991 Indirect evidence that there are only 3 types of neutrinos
- 1998 HELP: Missing neutrinos from the Sun!
- 2000 Discovery of tau neutrino

Super-Kamiokande

Super-Kamiokande

1000 meters
underground
50 kton of
pure water

13000 detectors

Super-Kamiokande

1000 meters
underground
50 kton of
pure water

13000 detectors

- best fit for $v_{\mu} \rightarrow v_{\tau}$ oscillation
- 🕇 data

What happened to the missing neutrinos?

What happened to the missing neutrinos?

What happened to the missing neutrinos?

Neutrino oscillations

- **1957** Bruno Pontecorvo hypothesizes that neutrinos can **oscillate**
- \implies If the neutrino oscillates then it has **mass**!

- Small neutrino cross-section and beam divergence: massive active target (~ 1.2 kton target with 30 ton emulsions)
- Detect τ-lepton production and decay: micrometric space resolution

4000 tons

9 million nuclear emulsions

110000 m² of emulsion films

- Small neutrino cross-section and beam divergence: massive active target (~ 1.2 kton target with 30 ton emulsions)
- Detect τ-lepton production and decay: micrometric space resolution

4000 tons

9 million nuclear emulsions

110000 m² of emulsion films

1400 meters underground: **Gran Sasso National Laboratories** (reduction of cosmic ray flux by a factor of 10⁶)

1400 meters underground: **Gran Sasso National Laboratories** (reduction of cosmic ray flux by a factor of 10⁶)

1400 meters underground: **Gran Sasso National Laboratories** (reduction of cosmic ray flux by a factor of 10⁶)

Bricks: the heart of the detector

Bricks: the heart of the detector

The OPERA experiment

The OPERA experiment

• Electronic detectors to provide the "time stamp", preselect the interaction brick and reconstruct μ charge/momentum

Interface emulsion films

• High signal/noise ratio for event trigger and scanning time reduction

Interface emulsion films

Example of electron neutrino

Interface emulsion films

Example of electron neutrino

Track follow-up and vertex finding

• Track follow-up film by film:

- Brick exposure at the surface laboratory to cosmic-rays for alignment
- Definition of the stopping point

• Volume scan: ~1-2 cm³ around the stopping point

• Basetracks: 3D vector data, micrometric precision

• Aligned basetracks: tracks

Converging tracks: vertex reconstruction

Converging tracks: vertex reconstruction

Event: 10125032322, May 05, 2010, 03:10 (UTC), Tracks reconstructed in emulsion

Event: 12273018341, Sep 29, 2012, 04:28 (UTC), Tracks reconstructed in emulsi

Event: 12273018341, Sep 29, 2012, 04:28 (UTC), Tracks reconstructed in emulsi

CIL

Momentum measurement by the multiple Coulomb Scattering

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$$

1.2 cm

High sampling calorimeter with >5 active layers per X₀

 $\frac{\Delta E}{E}$ 0.2 \overline{E}

51

51

51

 $\begin{array}{c} \tau^{-} \rightarrow \rho^{-} \nu_{\tau} \\ \rho^{-} \rightarrow \pi^{0} \pi^{-} \\ \pi^{0} \rightarrow \gamma \gamma \end{array}$

Particle identification by following the track along its path

Assess the muon/hadron nature of the particle

Kinematical variables measured in emulsion

Variable	Measured value
kink (mrad)	41 ± 2
decay length (µm)	1335 ± 35
P daughter (GeV/c)	12 +6 ₋₃
Pt (MeV/c)	470 +230 ₋₁₂₀
missing Pt (MeV/c)	570 +320 ₋₁₇₀
φ (deg)	173 ± 2

OPERA final results

Open data

opendata.cern.ch

SCIENTIFIC

OPERA tau neutrino charged current interactions

N. Agafonova¹, A. Alexandrov², A. Anokhina³, S. Aoki⁴, A. Ariga⁵, T. Ariga^{5,6}, A. Bertolin⁷, C. Bozza⁸, R. Brugnera^{7,9}, A. Buonaura^{2,10}, S. Buontempo², M. Chernyavskiy¹¹, A. Chukanov¹², L. Consiglio², N. D'Ambrosio¹³, S. Dallmeier-Tiessen³⁸ G. De Lellis^{2,10,38}, M. De Serio^{14,15}, P. del Amo Sanchez¹⁶, A. Di Crescenzo^{2,10}, D. Di Ferdinando¹⁷, N. Di Marco¹³, S. Dmitrievsky^{12,*}, M. Dracos¹⁸, D. Duchesneau¹⁶, S. Dusini⁷, T. Dzhatdoev³, J. Ebert¹⁹, A. Ereditato⁵, R. A. Fini¹⁵, F. Fornari^{17,20}, T. Fukuda²¹, G. Galati^{2,10,*}, A. Garfagnini^{7,9}, V. Gentile²², J. Coldberg²³ S. Corbupov¹¹, V. Corpushkin¹², C. Crella⁸, A. M

*corresponding author(s): Sergey Dmitrievsky (dmitr@jinr.ru) and Giuliana Galati (giuliana.galati@na.infn.it)

Abstract

The OPERA experiment was designed to discover the ν_{τ} appearance in a ν_{μ} beam, resulting from neutrino oscillations. The detector, located in the underground Gran Sasso Laboratory, consisted of a nuclear photographic emulsion/lead target with a mass of about 1.2 kt, complemented by electronic detectors. It was exposed, from 2008 to 2012, to the CNGS (CERN Neutrinos to Gran Sasso) beam, an almost pure ν_{μ} beam with a baseline of 730 km, collecting a total of $18 \cdot 10^{19}$ protons on target. The OPERA Collaboration eventually assessed the discovery of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations with a statistical significance of 6.1 σ by observing ten ν_{τ} candidate charged current interactions. The corresponding data sets have been published on the Open Data Portal at CERN. In this paper, a detailed description of the ν_{τ} data sample is provided in order to be handled and analysed by a wide range of users.

SND@LHC (SCATTERING AND NEUTRINO DETECTOR)

The SND@LHC experiment

- Colliders offer a novel laboratory for neutrinos: high v flux in the unexplored energies of ~(10²-10³) GeV
- New experiment: Scattering and Neutrino Detector at the LHC
 - Measures neutrinos from the LHC at an angular acceptance of 7.2<η<8.4
 - Designed to distinguish all neutrino flavours

Experiment timeline

August 2020 January 2021 March 2021

LETTER OF INTENT TECHNICAL PROPOSAL APPROVAL BY CERN

RESEARCH BOARD

July 2022 **FIRST MUONS FROM IP1 MEASURED**

SND@LHC Detector

2022 Luminosity

DAQ and event reconstruction

- Triggerless data acquisition
- Two-phase event reconstruction:
- → First phase: online with electronic detectors
 - Identify v candidates
 - Tag muons (Muon system)
 - Measure energy (SciFi & HCAL)
- →Second phase: offline with nuclear emulsion films
 - Extract, develop, scan, and analyse emulsion data
 - Reconstruct ν primary and secondary candidates
 - Match nuclear emulsion films and electronics reconstruction

SND@LHC experimental difficulties

- Scan and analysis of nuclear emulsion data is on-going, for the moment in 4 scanning labs (Napoli, Lebedev, Bologna, CERN)
- Reconstruct neutrino interactions in an environment with a high density of traces (~5x10⁵ part/cm²)

Measured track density: $\sim 10^5$ cm⁻²
SND@LHC experimental difficulties

• Distinguish the signal (neutrino interactions) from those due to the background of neutral particles and muons

MUON RADIOGRAPHY

Very special radiographs

Very special radiographs

Muon Radiography SCIENTIFIC REPORTS

Stromboli Volcano

First muography of Stromboli OPEN volcano

Valeri Tioukov 1, Andrey Alexandrov¹, Cristiano Bozza^{1,2}, Lucia Consiglio¹, Nicola D'Ambrosio 3, Giovanni De Lellis^{1,4}, Chiara De Sio^{1,2}, Flora Giudicepietro⁵, Giovanni Macedonio 5, Seigo Miyamoto⁶, Ryuichi Nishiyama⁶, Massimo Orazi⁵, Rosario Peluso⁵, Andrey Sheshukov⁷, Chiara Sirignano⁸, Simona Maria Stellacci^{1,2}, Paolo Strolin¹ & Hiroyuki K. M. Tanaka⁶

Muon Radiography SCIENTIFIC REPORTS

Stromboli Volcano

OPEN First muography of Stromboli volcano

Valeri Tioukov¹, Andrey Alexandrov¹, Cristiano Bozza^{1,2}, Lucia Consiglio¹, Nicola D'Ambrosio¹, Giovanni De Lellis^{1,4}, Chiara De Sio^{1,2}, Flora Giudicepietro⁵, Giovanni Macedonio⁵, Seigo Miyamoto⁶, Ryuichi Nishiyama⁶, Massimo Orazi⁵, Rosario Peluso⁶, Andrey Sheshukov⁷, Chiara Sirignano⁸, Simona Maria Stellacci^{1,2}, Paolo Strolin¹ & Hiroyuki K. M. Tanaka⁶

International journal of science

Letter | Published: 02 November 2017

Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray muons

Kunihiro Morishima 🏁, Mitsuaki Kuno [...] Mehdi Tayoubi 🏁

Nature 552, 386–390 (21 December 2017) | Download Citation 🕹

Muon radiography at "Sanità" district (Naples, Italy)

Using a nuclear emulsion detector in an archaeological site in the "Sanità" district in Naples we clearly observed the known structures as well as some unknown ones

One of the new structures observed is compatible with the existence of a hidden burial chamber, currently inaccessible!

scientific reports

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

<u>nature</u> > <u>scientific reports</u> > <u>articles</u> > article

Article | Open Access | Published: 03 April 2023

Hidden chamber discovery in the underground Hellenistic necropolis of Neapolis by muography

Valeri Tioukov $\[equation]$, Kunihiro Morishima, Carlo Leggieri, Federico Capriuoli, Nobuko Kitagawa, Mitsuaki Kuno, Yuta Manabe, Akira Nishio, Andrey Alexandrov, Valerio Gentile, Antonio Iuliano & Giovanni De Lellis

Scientific Reports 13, Article number: 5438 (2023) Cite this article

FOOT (FragmentatiOn Of Target) 0 0 ۲

CONVENTIONAL RADIOTHERAPY

CHARGED PARTICLE THERAPY

Lack of data on the fragmentation cross section of beams used for hadron therapy

The FOOT experiment

The FOOT experiment

Nuclear emulsions spectrometer

Data taken @ GSI (Darmstadt) 2020

Study of interactions

Charge measurement

- Nuclear emulsion response is proportional to the energy loss of particles over a certain dynamic range: grain density is proportional to the particle's specific ionization
- Highly ionizing particles saturate nuclear emulsion's response
- A procedure based on different thermal treatments can extend the dynamical range of the emulsions to overcome the saturation effects
- Each thermal treatment erase totally or partially the track's segments, depending on its ionization

Charge measurement

 Cut-based approach to distinguish MIP cosmic rays and Z≤2

 Principal Components Analysis to distinguish Z≥2 fragments

Search for dark matter... underground

Search for dark matter... underground

Nuclear recoils induced by galactic dark matter scattering in the emulsion

Lighter nuclei \Rightarrow longer range at same recoil energy \Rightarrow Sensitivity to low WIMP mass

82

Typical crystal size for a new type of emulsion film

	NIT	U-NIT
AgBr density	11 AgBr/μm	29 AgBr/µm

Range threshold	Carbon Energy
200 nm	75 keV
100 nm	35 keV
50 nm	15 keV

Track identification

- Fast and completely automated optical microscopes
- Challenge: detect tracks with lengths comparable/shorter than optical resolution
- Baseline strategy: two-steps approach

STEP1: CANDIDATE IDENTIFICATION

Pros: Fast scanning profiting of the improvements driven by the OPERA experiment, dedicated measurement stations in each lab

Limit: Resolution with standard technologies ~200 nm

STEP2: CANDIDATE VALIDATION (Resonant light scattering)

Pros: Super resolution ~6 nm

Step 1: Candidate Identification

- Scanning with optical microscope and shape recognition analysis
- Signal: clusters with elliptical shape: major axis along track direction
- Background: spherical clusters
- Automatic selection of candidate signals by optical microscopy
- Resolution 200 nm (one order of magnitude better than the OPERA scanning system), scanning speed 20 cm²/h

Step 2: Resonant Light Scattering

- Occurring when the light is scattering off a nanometric metallic (silver) grain dispersed in a dielectric medium (Applied Phys Letters 80 (2002) 1826)
- Sensitive to the shape of nanometric grains: when silver grains are **not spherical**, the resonant response depends on the polarization of the incident light.
- Each grain is emphasized at different polarization values

Oscillation of e-cloud

- Taking multiple measurements over the whole polarization range produces a displacement of the barycenter of the cluster
- Measure the displacement of cluster barycentre as a function of polarization angle (dx, dy)

Resonant light scattering: silver grains

Different orientation

Optical response strongly depends on the polarization of incident light

Resonant light scattering: silver grains

Different orientation

Optical response strongly depends on the polarization of incident light

	Physics Reports 662 (2016) 1–46	
	Contents lists available at ScienceDirect	PHYSICS REPORTS
\$~?? [4]	Physics Reports	
ELSEVIER	journal homepage: www.elsevier.com/locate/physrep	

	Physics Reports 662 (2016) 1–46	
	Contents lists available at ScienceDirect	PHYSICS REPORTS
\$~?? [4]	Physics Reports	
ELSEVIER	journal homepage: www.elsevier.com/locate/physrep	

	Physics Reports 662 (2016) 1–46	
	Contents lists available at ScienceDirect	PHYSICS REPORTS
\$~?? [4]	Physics Reports	
ELSEVIER	journal homepage: www.elsevier.com/locate/physrep	

	Physics Reports 662 (2016) 1–46	
	Contents lists available at ScienceDirect	PHYSICS REPORTS
\$~?? [4]	Physics Reports	
ELSEVIER	journal homepage: www.elsevier.com/locate/physrep	

Two grains building up a track

Two grains building up a track

Single grain: accuracy

Single grain: accuracy

Super-resolution microscope

Measurement of track slope and length beyond optical resolution

Results for 100keV C-ions: Horizontal ions, signal-like events

- Barycenter displacement > 20 nm (Displaced)
- Barycenter displacement ≤ 20 nm (Non-displaced)

Color representation

h

R = 45 nm → blue H = 80 (120) nm → green (red)

Annu. Rev. Phys. Chem. 58 (2007) 267-297

dipole in metallic particle

dipole moment $p = 4\pi\varepsilon_m a^3 \frac{\varepsilon_1(\lambda) - \varepsilon_m(\lambda)}{\varepsilon_1(\lambda) + 2\varepsilon_m(\lambda)} E_0$

resonance $\varepsilon_1(\lambda_l) + 2\varepsilon_m(\lambda_l) \approx 0$

Appl. Phys. Lett. 80, 1826 (2002)

Ag grain size \rightarrow resonance wavelength

h

R = 45 nm → blue H = 80 (120) nm → green (red)

Annu. Rev. Phys. Chem. 58 (2007) 267-297

dipole in metallic particle

dipole moment $p = 4\pi\varepsilon_m a^3 \frac{\varepsilon_1(\lambda) - \varepsilon_m(\lambda)}{\varepsilon_1(\lambda) + 2\varepsilon_m(\lambda)} E_0$

resonance $\varepsilon_1(\lambda_l) + 2\varepsilon_m(\lambda_l) \approx 0$

Appl. Phys. Lett. 80, 1826 (2002)

Ag grain size \rightarrow resonance wavelength

A few textbook references

- P.H. Fowler, D.H. Perkins and C.F. Powell, The study of elementary particles by the photographic method, Pergamon Press (1959).
- W.H. Barkas, Nuclear research emulsion, Academic Press, New York, 1973.
- Tadaaki Tani, Photographic Science, Advances in Nanoparticles, J-Aggregates, Dye Sensitization, and Organic Devices, Oxford University Press (2011), ISBN: 9780199572953.
- G. De Lellis et al., Nuclear Emulsions, vol. 21B1 of Landolt-Bo¨rnstein Series: Detectors for Particles and Radiation (Springer International Publishing AG, 2011). 2019 Edition being printed

backup slides

Summary of measurement performance

Observable	Method	Range	Notes
τ (lifetime)	Flight length, < ð >	10 ⁻¹⁶ ÷10 ⁻¹¹ s	
Momentum	MCS	0.5 ÷ 10 GeV	pion
Momentum	range	<500 MeV	
Energy	Shower counting, calorimetry	1÷ 20 GeV	electron
Z (charge)	Ionization	1÷6	nuclei
A (mass number)	Range, MCS	1÷ 12	nuclei
Kinetic energy	Nanometric range	≥30 keV	Carbon
e/ π^0 separation	γ conversion	No threshold	
μ/π separation	Range, topology	No threshold	Dense material

NEWSdm detector

TECHNICAL TEST INSTALLED IN UNDERGROUND GRAN SASSO INFN LABORATORIES (HALL B) IN JUNE 2019

Resonant light scattering

 E_{I} intensity inside the metal

Scattering spectrum depends on the light polarization and on the grain shape H.Tamaru et al., Applied Phys Letters 80, 1826 (2002)

The polarization dependence of the resonance frequencies strongly reflects the shape anisotropy