Dual-phase xenon TPCs for rare events search

Giornate di Studio sui Rivelatori Cogne 2023

Andrea Molinario

ISTITUTO NAZIONALE DI ASTROPISICA OSSERVATORIO ASTROFISICO DI TORINO

Outline

- Liquid xenon properties
- > Dual-phase TPC concept
- A concrete example: XENONnT
- > The ancillary systems
- Calibration
- Background and its mitigation
- Science cases
- Currently operating and future detectors

Liquid xenon properties

Introducing xenon (Xe)

	1																	18
1	÷ H	2											13	14	15	16	17	He
2	Li	₿e											B	ċ	Ň	Ö	F	Ne
3	¹¹ Na	Mg	3	4	5	6	7	8	9	10	11	12	Å	si Si	P	16 S	ν" CΙ	År
4	19 K	ca	21 SC	Ťi	23 V	Čr	^{عة} Mn	Fe	и Со	²⁸ Ni	29 Cu	³⁰ Zn	а Ga	³² Ge	As	sa Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³ ^³ Sr	39 Y	[≁] Zr	Nb	Mo	^₄ Tc	ĸ	ĸ	₽d	Åg	Ğd	^₄ " In	s⁰ Sn	sı Sb	Te	53 	xe
6	°s Cs	Ba	*	Н́f	Та	W	Re	⁷⁶ OS	" Ir	Pt	Åu	нв	a1 TI	Pb	Bi	^{₿4} Po	At as	ĸ
7	^{هر} Fr	ĸa	**	₽ Rf	Db	Sg	[™] Bh	¹⁰⁸ Hs	Mt	110 DS	Rg	Cn	™ Nh	FI	Mc	116 LV	Ts	ong 118
	Lanthanides*		₅ ⁷⁷ La	s≋ Ce	⁵⁹ Pr	м́d	Pm	Sm	⁶³ Eu	Ğd	fb	б́у	но́	Ĕr	т́т	Ϋ́b	⁷¹ Lu	
	Actinides**		Åc	πĥ	۳ Pa	92 U	⁹³ Np	^{s₄} Pu	Åm	۲m	⁹⁷ Bk	Cf	99 Es	Fm	™d	¹⁰² No	103 Lr	

- Xenon (Xe) is the 5th noble gas
- It can be found in traces in the atmosphere (0.05 ppm)

Property	Value
Atomic number, Z	54
Molar mass	$131.29 \mathrm{g mol^{-1}}$
Isotopic abundances	124 Xe (0.095%), 126 Xe (0.089%), 128 Xe (1.91%)
	129 Xe (26.4%), 130 Xe (4.07%), 131 Xe (21.2%)
	132 Xe (26.9%), 134 Xe (10.4%), 136 Xe (8.86%)
Gas density $(273 \text{ K}, 1 \text{ atm})$	$5.8971{ m gL^{-1}}$
Liquid density (165.05 K, 1 atm)	$3.057{ m gcm^{-3}}$
Melting point, (1 atm)	$161.4\mathrm{K}$
Boiling point, (1 atm)	$163.05~{ m K}$
Triple point	$161.31 \mathrm{K}, 0.805 \mathrm{atm}, 3.08 \mathrm{g cm^{-3}}$
Critical point	$289.74 \mathrm{K}, 57.65 \mathrm{atm}, 1.155 \mathrm{g cm^{-3}}$
Latent heat of fusion	$17.29\mathrm{kJkg^{-1}}$

- Xe has 7 stable isotopes
- Most abundant isotopes: ¹²⁹Xe, ¹³¹Xe, ¹³²Xe
- ^{> 124}Xe decays through double e- capture
- > ¹³⁶Xe undergoes $\beta\beta$ decay

Liquid Xe (LXe) properties

- > Xe is liquid (LXe) above its triple point at 161.4 K and 0.817 bar
- > Typically operated at ~2 bar and at 170-180 K
- High density in liquid phase: ~2.85 g/cm³

Particle interactions

- > Alpha particles with energies (5-8) MeV have $O(\mu m)$ range
- MeV electrons reach O(cm) range
- LXe has a great self-shielding capability

LXe scintillation process

- LXe is an excellent scintillator:
 ~45x10³ photons/MeV for relativistic e- , it is transparent to its own scintillation light
- Only Ionization and Scintillation signals are detectable in dual-phase XENON TPCs

LAr: triplet 1.6 μ s – singlet 5 ns LNe: triplet 15 μ s – singlet 19 ns

LXe scintillation spectrum

Property	Value
Avg. energy per electron-ion pair, $W_{\rm i}$	$15.6\mathrm{eV^a}$
Avg. energy per scintillation photon, $W_{\rm ph}(\max)$	$13.8\mathrm{eV^b}$
Ratio of excitons to ionization $N_{\rm ex}/N_{\rm i}$	0.06^{a}
Scintillation properties	
Scintillation wavelength, λ_s	$178\mathrm{nm^c}$
Excimer singlet lifetime, τ_1	$2.2\mathrm{ns^d}$
Excimer triplet lifetime, τ_3	$27\mathrm{ns^d}$

^b Doke *et al.* (2002) ^c Jortner *et al.* (1965)

 $^{\rm c}\,$ Kubota et al. (1978b)

- LXe scintillation at (174.8 ± 0.1 (stat.) ± 0.1 (syst.)) nm [Fujii 2015]
- > UV regime, still possible to detect directly (no wavelength shifting)
- LAr emits at 125 nm and LNe at 78 nm

Decay time constants

- Amplitudes of singlet and triplet are dE/dx dependent and also electric field dependent
- > Pulse Shape Discrimination (PSD) not very effective in LXe due to similar decay constants
- > PSD gets better in LAr and LNe

Optical properties

Total attenuation length, λ_{att}

Light intensity after a distance r

 $I(r) = I_0 \cdot \exp^{-(r/\lambda_{att})}$

Optical property	Values [unit]
Absorption length	> 100 [cm]
Scattering length	30, 35 [cm] (calculated)
Attenuation length	29, 36, 40, 50 [cm]
Refractive index	1.69

- > The short attenuation length affects the light propagation for large detectors, timing information is lost
- > For dual-phase detector, **total reflection** of photons at liquid-gas interphace occurs

Single-phase (LXe) detectors

XMASS@Kamioka (Japan)

- > High light yield with a 4π photosensors coverage (XMASS has 14.7 PE/keV_{ee}, E_{th} = 0.3 keV_{ee})
- Position resolution in the cm range
- PSD for particle discrimination

Dual-phase TPC concept

Ionization process

- > N_i >> N_{ex} for electronic recoils (ER)
- > $N_i \sim N_{ex}$ for nuclear recoils (NR)
- Charge and light production are dE/dX dependent

$$E_t = N_i \cdot \overline{E}_i + N_{ex} \cdot \overline{E}_{ex} + N_i \cdot \overline{\epsilon}$$

- E_t: total energy deposited
- E_i & E_{ex}: average energy to ionize or excite an atom
- N_i & N_{ex}: average number of ionized or excited atoms
- ē: mean energy of sub-excitation electrons (only heating the medium)

Applying electric field

E. Aprile et al., Phys. Rev. Lett. 97 (2006) 081302

 $S(F_d)/S_0 [Q(F_d)/Q_0]$ is the light [charge] output relative to the value with no field

- Light yield decreases with increasing electric field
- Charge yield increases with increasing electric field
- > Very low field-quenching for α and NR

Signal yields

Figures from the NEST noble element simulation technique

- > Energy-dependent yields for ER, NR and α particles
- > Electric field dependence of the yields

Yields for NR

> Quenching for NR due to energy lost to heat

Electrons drift velocity and absorption

- > Higher drift field gives higher electrons drift velocity
- > Drifting electrons are absorbed by electronegative impurities

 $S2(t_{D}) = S2(0)*exp[-t_{D}/\tau]$

τ is "electron lifetime"

Electrons diffusion

- Diffusion increases the relative distance of the drifting electrons
- The width of S2 increases due to diffusion

Electrons extraction

- Electrons have to overcome potential barrier: (0.65 0.85) eV
- Large extraction field (~5-10 kV/cm) has to be applied

Proportional scintillation

 \rightarrow Field in the gas phase E_a

$$E_g = rac{\epsilon_\ell \cdot \Delta V}{h_g \cdot (\epsilon_\ell - 1) + H}$$
 with $\epsilon_\ell = 1.95$

Yield

$$Y = \left(a \cdot rac{E_g}{P_g} + b
ight) \cdot h_g \cdot P_g$$

- Important to keep the liquid level stable over the whole surface
- > Amplification: typically 20-30 PE for each electron extracted

A good idea: dual-phase Xe TPC

- A prompt scintillation signal (S1)
- Electrons from ionization drift under electric field E_{drift}
- They are extracted in gas phase and produce proportional signal (S2)
- Array of photosensors on top and bottom

- Drift time provides depth (z) of interaction
- > S2 light pattern on top array gives (x,y)
- Position reconstruction with few mm resolution
- ER/NR discrimination with S2/S1 ratio

Anti-correlation of light and charge signals

- The total number of quanta get shared between scintillation photons (S1) and electrons (S2)
- Fluctuations in the number of photons and electrons are anti-correlated: more photons implies less electrons available, and vice-versa
- This is apparent when plotting S2 vs S1 for monoenergetic signals

Energy reconstruction

> A combined energy scale is commonly used

$$\hat{E} = W \left(\frac{cS1}{g_1} + \frac{cS2}{g_2} \right)$$
 W = 13.7 eV
g1, g2 detector-dependent gains

- Energy threshold down to few keV
- Different energy scales for ER (keV_{ee}) and NR (keV_{nr})

Particle identification

Calibration data from the XENON100 detector

Typical ER rejection power is 99.5% for 50% NR acceptance

Volume fiducialization

E. Aprile et al., Phys. Rev. Lett. 109, 181301 (2012)

 The possibility to define an inner fiducial volume greatly decreases the external background contribution (for example from material radioactivity) A concrete example: XENONnT

XENONnT

- XENONnT is a dual-phase TPCs operating underground at INFN Laboratori Nazionali del Gran Sasso (Italy)
- Main goal is the direct detection of dark matter

- > XENONnT contains 5.9 t of Xe
- It is currently taking science data

XENONnT construction: TPC structure

XENONnT construction: electrodes and PMTs

XENONnT construction: electrodes and PMTs

Putting all together

Et voilà!

The ancillary systems

Infrastructure underground

General view

- > **Cryogenic system:** it keeps the detector cold
- GXe/LXe purification: it purifies Xe from electronegatives
- Krypton/Radon removal: distillation columns to reduce the ⁸⁵Kr and ²²²Rn contaminations
- ReStoX1/ReStoX2: Xe storage and fast recovery system

The cryogenic system

- It is based on LHe-cooled Pulse Tube Refrigerators (PTR)
- > Two PTRs to ensure redundancy
- A backup LN2 system
- Installed in the service building, away from the TPC
- Cooled Xe flows back in the detector through the cryopipe

GXe/LXe purification system

- Xe is continuosly circulated through getters to reduce the level of impurities
- > This is crucial to reach a large electron lifetime, i.e. less electron absorption during drift
- The purification ability greatly increases moving from a GXe to a Lxe circulation system

Krypton removal

- > ⁸⁵Kr produces β -decays with a long half-life (10.7 y)
- Kr level in Xe has to be reduced with a dedicated distillation column
- The distillation is very efficient and the Kr/Xe level gest reduced by 3 orders of magnitude (< 1 ppt)

Radon Removal System

- After Kr is removed, the main background is from the decay chain of ²²²Rn, in particular β-decay of ²¹⁴Pb
- ²²²Rn is continuously emanated from the material surfaces
- Its level is reduced to a lower equilibrium point (< 1 µBq/kg) with a dedicated distillation column</p>

Calibration of dual-phase xenon TPCs

Internal vs external calibration sources

- External calibration sources do not provide a uniform events distribution in the TPC
- > This is due to the high shielding power of Lxe
- Typically used:
 ⁵⁷Co, ¹³⁷Cs, ⁶⁰Co, ²³²Th, AmBe

- Internal calibration sources can be used: elements which are diffused in the LXe volume
- Typically used in dual-phase xenon TPCs:
 ²²⁰Rn (continuous), ^{83m}Kr, ³⁷Ar, ^{129m}Xe, ^{131m}Xe, ¹²⁷Xe (monoenergetic)

Position-dependent correction maps

XENON1T S1 correction maps

S2 vs drift time

XENON1T S2 electron lifetime measurement

- ^{83m}Kr is uniform and monoenergetic, it is ideal to build position-dependent correction maps
- > ³⁷Ar is also useful for this task

Results of calibration

'c' indicates corrected quantity cS1: corrected for position-dependent light collection efficiency cS2: corrected for electron lifetime

Measuring g_1 and g_2

- The detector-dependent parameters are determined using charge and light yields from different sources
- g₁ and g₂ enters the combined energy scale definition

$$\hat{E} = W\left(\frac{\mathrm{cS1}}{g_1} + \frac{\mathrm{cS2}}{g_2}\right)$$

Background and mitigation strategies

ER background components

XENON1T, JCAP04 (2016) 027, arXiv:1512.07501

- External sources: materials radioactivity
- Mitigation: fiducial volume, screening of materials
- Internal sources: ²²²Rn, ⁸⁵Kr, ¹³⁶Xe, solar v
- Mitigation: it depends on the source, fiducial volume not effective

Kr and Rn mitigation

- Reduction of Kr and Rn level with dedicated distillation columns
- The α decays of the Rn chain can be easily excluded (high energy), possible to tag BiPo coincidence decay
- > Only problematic contribution is the ²¹⁴Pb decay

¹³⁶Xe and neutrino mitigation

¹³⁶Xe (8.9% abundance) undergoes ββ decay, $t_{1/2}$ = 2.2 x 10²¹ y

 136 Xe ightarrow 136 Ba $+2e^{-}(+2\overline{
u})$

Peak at spectrum endpoint Q_{BB} = 2.458 MeV

 \succ Solar v scattering off electrons

 $v + e \rightarrow v + e -$

- > Mainly pp v with energies up to 420 keV
- It's not possible to reduce these backgrounds as done for ⁸⁵Kr and ²²²Rn
- As mentioned, fiducial volume doesn't help here
- Strategy is to precisely describe them and include in background model
- Both backgrounds are not dominant in the low energy region

NR background components

NR background much smaller than ER background, but important since it mimics WIMP interaction

Neutrons from material

Fiducial volume, exclusion of multi-scatter events, tagging with a Neutron Veto

- Coherent Elastic ν-Nucleus Scattering (CEvNS)
 From solar ν (⁸B, hep), atmospheric ν and diffuse supernova ν
- > This is an irreducible background, need a good modeling

Cosmogenic neutrons

These are muon-induced neutrons, they represent a negigible contribution with the help of a Muon Veto

Science cases for dual-phase xenon TPCs

Direct dark matter search

Science cases for dual-phase xenon TPCs

The problem of dark matter

- Dark Matter is made of new particles beyond the standard model
- > WIMPs are a class of candidates
- We can search for WIMP scattering on nuclei of ordinary matter

Xe pros in the search for dark matter

- Large masses and homogenous targets
- Low energy threshold (few keV)
- Very low intrinsic background
- Volume fiducialization
- > Heavy nucleus \rightarrow large expected interaction rate

Leading technology

D.Akerib, Noble Gas Based Direct Detection & G3 (XLZD Proposal)

> Dual-phase Xe TPCs are currently the leading technology in the direct search for dark matter

WIMP search best limits

LZ Collaboration, 2022

XENON Collaboration, 2023

ER searches

- Thanks to extremely low background in ER, it's possible to search for other dark matter candidates (axions, ALPs, dark photon)
- Look for excess above a known background level
- Background shape dominated by 2nd order processes

Solar and Supernova neutrinos

Science cases for dual-phase xenon TPCs

Coherent v-nucleus scattering

- > CEvNS constitute an irreducible background, but they also represent an interesting signal to study
- XENONnT will attempt the first detection of ⁸B solar v with CEvNS

Supernova neutrino

- If a supernova happens in our Galaxy, an intense v burst will be detected by several detectors
- Dual-phase Xe TPC can observe CEvNS induced by these supernova neutrino
- Interesting point is that this channel is independent of v oscillation effect (this is not the case for other interaction channels as the IBD)

Neutrinoless ββ decay

Science cases for dual-phase xenon TPCs

v-less ββ decay

- A process violating lepton number conservation
- > It would imply v is a Majorana particle (v and anti-v are the same particle)

 ¹³⁶Xe (8.9% abundance) undergoes ββ decay (with 2 anti-ν)

 136 Xe ightarrow 136 Ba +2 $e^-(+2\overline{
u})$

- > Candidate for v-less $\beta\beta$ decay
- Peak at spectrum endpoint Q_{BB} = 2.458 MeV

Search for v-less $\beta\beta$ decay

> Good energy resolution at Q_{BB} (< 1%) is crucial to reach a good sensitivity

$$S_{0\nu}\propto\epsilon\cdotrac{lpha}{A}\cdot\sqrt{rac{M\cdot t}{\Delta E\cdot b}}$$

ε: detection eff., A: atomic mass, ΔE: energy resolution & b: background level

Rare decays

Science cases for dual-phase xenon TPCs

Observation of ¹²⁴Xe decay

> ¹²⁴Xe undergoes a very rare decay via double electron capture

 124 Xe + 2e⁻ \rightarrow 124 Te + 2v_e

- Observed for the first time in XENON1T (2019)
- > Longest half-life ever measured $(1.1 \pm 0.2_{stat} \pm 0.1_{sys}) \times 10^{22} \text{ y}$

E. Aprile et al. (XENON), Nature 568 (2019), no. 7753, 532-535

Currently operating and future dual-phase xenon TPCs

XENONnT

Where: Laboratori Nazionali del Gran Sasso (Italy)

- > Target mass: 6 t
- > Status: Taking science data

LUX-ZEPLIN (LZ)

- Where: Sanford Underground Research Facility (SD, USA)
- > Target mass: 7 t
- Status: Taking science data

PANDAX-4T

- Where: China Jinping Underground Laboratory (China)
- > Target mass: 4 t
- > *Status:* Taking science data

The future: DARWIN

- R&D and design study ongoing for a large LXe dark matter detector
- **50 t LXe total** (40 t in the TPC)
- > TPC of 2.6 m diameter and 2.6 m drift length
- > It will continue the search for dark matter
- It will be a large observatory for astroparticle physics,
 ν-less ββ decay and rare processes

DARWIN, JCAP 1611 (2016) 017

Final summary

- Dual-phase xenon TPCs are detectors with many interesting properties: energy reconstruction, low energy threshold, position reconstruction, ER/NR discrimination
- > They feature a very low background, in particular in the NR region
- For this reason, they are well suited for the direct detection of dark matter, for which they are currently the leading technology
- > They are employed also in other rare events search: neutrino interactions, rare decays