
Black Hole Thermodynamics: Then and Now

Edward Witten, IAS

Majorana Lecture 1, University of Naples, June, 2024



I will start today by reviewing some of the high points of black hole
thermodynamics as it developed originally in the 1970’s. Then in
the second half of the lecture, I will turn to a more modern
perspective.



Broadly the two parts of the lecture correspond to two points of
view about entropy. “Entropy” can mean thermodynamic entropy
and then it obeys a Second Law of Thermodynamics:

dSthermal

dt
≥ 0.

Alternatively, one can adopt a microscopic point of view about
entropy. Though we could start with classical physics, for brevity I
will consider the quantum case. A quantum mechanical system in
a general, possibly “mixed” state has a density matrix ρ and its
von Neumann entropy is defined by

SvN = −Tr ρ log ρ.

Under unitary quantum mechanical evolution, ρ→ e−iHtρe iHt , so

dSvN
dt

= 0.



The relation between the two is that Sthermal is the largest that
SvN can be given the macroscopic state of a system (its energy, for
instance):

SvN ≤ Sthermal.

If one looks like a system that appears thermal, it is very hard to
know if it is truly in a thermal state with SvN = Sthermal, or if it is
actually in (or almost in) a typical microstate drawn from a
thermal ensemble, in which case SvN � Sthermal.



To explain in more detail the inequality SvN ≤ Sthermal: Consider a
quantum system that has N states with observed values of the
macroscopic observables (such as energy, charge, ....). A general
density matrix ρ of such a system can be diagonalized

ρ =
∑
i

pi |i〉〈i |,
∑
i

pi = 1,

which one can interpret to mean that the system is in state |i〉
with probability pi . Then

SvN = −
∑
i

pi log pi .

This vanishes for a pure state (one of the pi = 1 and the others are
0). A simple exercise with Lagrange multipliers shows that under
the constraint

∑
i pi = 1, pi ≥ 0, the quantity SvN is maximal if all

pi = 1/N – in other words, if all states consistent with
macroscopic observations are equally probable. This is a
(microcanonical version of) an equilibrium state with the given
macroscopic observables. Its von Neumann entropy – namely logN
– is the thermodynamic entropy of such a system.



“Coarse-graining” and forgetting all microscopic details of a
system that are not captured by macroscopic observables such as
its energy and density will replace the actual density matrix of a
system by a thermal one and reduce to the case

SvN = Sthermal.

Black hole thermodynamics, however, began with thermodynamic
entropy, so we will begin there.



Jacob Bekenstein (1972), inspired by questions from his advisor
John Wheeler, asked what the Second Law of Thermodynamics
means in the presence of a black hole.

The Second Law says that, for an ordinary system, the “entropy”
can only increase. However, if we toss a cup of tea into a black
hole, the entropy seems to disappear. Bekenstein wanted to
“generalize” the concept of entropy so that the Second Law would
hold even in the presence of a black hole. For this, he wanted to
assign an entropy to the black hole.



What property of a black hole can only increase? It is not true
that the black hole mass always increases. A rotating black hole,
for instance, can lose mass as its rotation slows down. But there is
a quantity that always increases: Stephen Hawking had just proved
the “area theorem,” which says that the area of the horizon of a
black hole can only increase. So it was fairly natural for Bekenstein
to propose that the entropy of a black hole should be a multiple of
the horizon area. For example, for a Schwarzschild black hole of
mass M

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2

1− 2GM
r

+ r2dΩ2,

the horizon is at
R = 2GM

and the horizon area is

A = 4πR2 = 16πG 2M2.



Since entropy is dimensionless, to relate the entropy of a black hole
to its area, one requires a constant of proportionality with
dimensions of area. From fundamental constants ~, c and
G = Newton′s constant, one can make the Planck length
`P = (~G/c3)1/2 ∼= 10−33 cm, and the Planck area `2P . In units
with c = 1, Bekenstein’s formula for the entropy was

S =
A

4G~
,

where the constant 1/4 was not clear in Bekenstein’s work and was
provided by Stephen Hawking a few years later, in a way that I will
explain. For a Schwarzschild black hole

S =
4πGM2

~
.

(I sometimes will set ~ = 1, but it is useful to include the 1/~ in
these formulas to explain why black hole entropy is so large.)



Bekenstein’s idea was that the entropy of a black hole was
supposed to capture the information lost when the black hole was
formed – he interpreted it as the logarithm of the number of
possible ways the black hole might have formed. Bekenstein
proposed a “Generalized Second Law” saying that the “generalized
entropy”

Sgen =
A

4G~
+ Sout

always increases. Here Sout is the ordinary entropy of matter and
radiation outside the black hole. The claim is that when something
falls into the black hole, Sout may go down but A/4G~ increases
by more. Since Sgen increases when a cup of tea falls into a black
hole, clearly Sgen is a thermodynamic entropy, not a microscopic
von Neumann entropy.



Bekenstein made a few tests of the Generalized Second Law. Here
is one. Shine photons with a wavelength λ and (therefore) energy
E = 1/λ on the black hole. The entropy of a single photon is of
order 1, for example because the photon has two polarization
states. When the black hole absorbs one photon, its mass shifts by

∆M =
1

λ

so its entropy Sbh = 4πGM2 shifts by

∆Sbh = 4πG ((M + 1/λ)2 −M2) ∼= 8πG
M

λ
.

Bekenstein wanted ∆Sbh > ∆Sout ∼= 1. He observed that if the
black hole is capturing a photon of size smaller than the
Schwarzschild diameter 2R = 4GM of the black hole, say

λ << 4GM

then
∆Sbh >> 2π

which is satisfactory.



However, Bekenstein did not really get a satisfactory answer if the
black hole is absorbing photons of wavelength larger than the black
hole size – which can happen, though not very efficiently. This
question really does not have a satisfactory answer in the
framework that Bekenstein was assuming, which was that whatever
falls behind the black hole horizon stays there forever. In
thermodynamic terms, since Bekenstein assumed that the black
hole does not radiate, one would have to assign it a temperature of
0. Thermodynamics says that at equilibrium the changes in energy
E and entropy S of a system are governed by

dE = TdS

or dS = dE/T , so a system with T = 0 should have dS =∞ if
dE 6= 0. But Bekenstein wanted to attribute a finite, not infinite,
entropy to the black hole. One cannot analyze the absorption of
very long wavelength photons by the black hole while ignoring the
fact that the black hole is strongly emitting such photons.



Famously, Stephen Hawking discovered in 1974 that at the
quantum level, a black hole is not really black – it has a
temperature proportional to ~. As preparation for explaining what
Hawking did, I want to recall the idea of a Penrose diagram as a
convenient way to depict and visualize spacetime:



A Penrose diagram (for a spherically symmetric spacetime) is
always drawn so that radially ingoing or outgoing light rays are at
a π/4 angle to the vertical:



Hawking made his discovery by analyzing the behavior of quantum
fields in a black hole geometry:



Measurements that an observer at future null infinity will make can
be traced back to initial conditions of the quantum field on a
Cauchy hypersurface. It is convenient to pick a hypersurface that
crosses the horizon to the future of the collapsing star:



This picture shows signals propagating out at the speed of light
from the initial value surface to the observer at infinity:

What will the observer see? Part of Hawking’s insight was that
although the full details of exactly what the observer will see
depend on the details of the collapsing star, if we ask what the
observer will see in the far future after transients die down, we will
get a universal answer.



The most important point about this picture is that a signal that is
received very late

originated from very close to the horizon. This means that observations
made at late times depend on measurements of the state of the quantum
fields at short distances. But every state is equivalent to the vacuum at
short distances. So the late time observations of the observer probe the
vacuum state near the horizon at short distances. That is why Hawking
got a universal answer for the late time behavior, regardless of exactly
how the black hole formed.



Let u be a coordinate function that vanishes on the horizon on
some particular Cauchy slice - it doesn’t matter precisely how u is
defined.

And let t be the time at which a signal is detected by an observer
at infinity. The relation between u and t is

t = 4GM log
1

u
+ C0 +O(u),

where C0 is an integration constant. One finds this formula by
solving the geodesic equation for an outgoing null geodesic.
Rescaling u will only shift the unimportant constant C ; nonlinear
redefinitions of u will affect the unimportant O(u) terms.



We can solve the equation t = 4GM log 1
u + C0 +O(u) for u:

u = C1 exp(−t/4GM).

At late times, that is if t is large, u is exponentially small.
Moreover, du/dt is also exponentially small, which means that a
mode observed at infinity will have undergone an exponentially
large redshift on its way. A mode of any given energy E that is
observed at a sufficiently late time will have originated from a very
high energy mode near the horizon. That is why there is a simple
answer. A mode of very high energy propagates freely, along the
geodesics that I’ve been drawing.



The observer at infinity probes the radiation by measuring a
quantum field ψ(t). A typical observable is a two-point function

〈ψ(t)ψ(t ′)〉.

Near the horizon, if the field ψ is for simplicity a free fermion with
dimension 1/2 in the 1 + 1-dimensional sense, one would have had

〈ψ(u)ψ(u′)〉 =
(du du′)1/2

(u − u′)
.

Setting u = C1 exp(−t/4GM), we see that for the observer at
infinity, this translates to

〈ψ(t)ψ(t ′)〉 =
(dtdt ′)1/2

exp((t − t ′)/8GM)− exp(−(t − t ′)/8GM)
.

This is antiperiodic in imaginary time, that is it is odd under
t → t + 8πGMi. That antiperiodicity corresponds to a thermal
correlation function at a temperature TH = 1/8πGM, which is the
Hawking temperature.



In other words, a black hole, after transients that depend on how it
was created die down, radiates thermally at a temperature
TH = 1/8πGM. This explains why Bekenstein had had trouble
making sense of the interaction of the black hole with low energy
photons. It also lets us confirm the value of the entropy: using

dE = TdS

where E = M and T = 1/8πGM gives dS = 8πGMdM so
S = 4πGM2. The area of a Schwarzschild black hole is
A = 16πG 2M2 so the entropy is

S =
A

4G
.

This is how Hawking confirmed Bekenstein’s ansatz and
determined the constant that was unclear in Bekenstein’s work.



Many researchers have thought that, somehow, the entropy
S = A/4G means that the black hole can be described by some
sort of degrees of freedom that live at its surface – one bit or qubit
for every 4G of area. For example, in a famous article in 1992,
John Wheeler illustrated that idea with this picture:312 JOHN ARCHIBALD WHEELER THE SEARCH FOR LINKS 313

Fig. 19.1. Symbolic representation of the "telephone number" of the particular one of the
2" conceivable, but by now indistinguishable, configurations out of which this particular
blackhole, of Bekenstein number N and horizon area 4NHlogs2, was put together. Symbol,
also, in a broader sense, of the theme that every physical entity, every it, derives from bits.
Reproduced from JGST, p.220.

a magnetic field B that runs perpendicular to it. In consequence the piece of copper
receives in the time t a transfer of momentum p in a direction z perpendicular to
the directions of the wire and of the field,

p - Blit
= (flux per unit z) x (charge, e, of the elementary carrier of current)

x (number, N,of carriers that pass in the time t)
(19.2)

This impulse is the source of the force that displaces the indicator needle of the
magnetometer and gives us an instrument reading. We deal with bits wholesale
rather than bits retail when we run the fiducial current through the magnetometer
coil, but the definition of field founds itself no less decisively on bits.

As third and final example of it from bit we recall the wonderful quantum
finding of Bekenstein [58-60] — totally unexpected denouement of earlier classical
work of Penrose [61] Christodoulou [62] and Ruffini [63] — refined by Hawking [64,
65] that the surface area of the horizon of a blackhole, rotating or not, measures
the entropy of the blackhole. Thus this surface area, partitioned in imagination
(Fig. 19.1) into domains each of size 4fUoge2, that is, 2.77... times the Planck area,

yields the Bekenstein number, N; and the Bekenstein number, so Thorne and Zurek
explain [66] tells us the number of binary digits, the number of bits, that would be
required to specify in all detail the configuration of the constituents out of which
the blackhole was put together. Entropy is a measure of lost information. To no
community of newborn outside observers can the blackhole be made to reveal out
of which particular one of 2N configurations it was put together. Its size, an it, is
fixed by the number, N, of bits of information hidden within it.

The quantum, H, in whatever correct physics formula it appears, thus serves as
lamp. It lets us see horizon area as information lost, understand wave number of
light as photon momentum and think of field flux as bit-registered fringe shift.

Giving us its as bits, the quantum presents us with physics as information.

How come a value for the quantum so small as H = 2.612 x 10~66 cm2? As well
as ask why the speed of light is so great as c = 3 x 1010 cm/s! No such constant
as the speed of light ever makes an appearance in a truly fundamental account
of special relativity or Einstein geometrodynamics, and for a simple reason: Time
and space are both tools to measure interval. We only then properly conceive
them when we measure them in the same units [4, 16]. The numerical value of
the ratio between the second and the centimeter totally lacks teaching power. It
is an historical accident. Its occurrence in equations obscured for decades one of
Nature's great simplicities. Likewise with H\y equation that contains an H
floats a banner, "It from bit". The formula displays a piece of physics that we
have learned to translate into information-theoretic terms. Tomorrow we will have
learned to understand and express all of physics in the language of information. At
that point we will revalue H = 2.612 x 10~66 cm2 — as we downgrade c = 3 x 1010

cm/s today — from constant of Nature to artifact of history, and from foundation
of truth to enemy of understanding.

19.3 Four No's

To the question, "How come the quantum?" we thus answer, "Because what we
call existence is an information-theoretic entity." But how come existence? Its
as bits, yes; and physics as information, yes; but whose information? How does
the vision of one world arise out of the information-gathering activities of many
observer-participants? In the consideration of these issues we adopt for guidelines
four no's.

First no: "No tower of turtles," advised William James. Existence is not a globe
supported by an elephant, supported by a turtle, supported by yet another turtle,
and so on. In other words, no infinite regress. No structure, no plan of organization,
no framework of ideas underlaid by another structure or level of ideas, underlaid
by yet another level, by yet another, ad infinitum, down to a bottomless night. To
endlessness no alternative is evident but loop [47, 67], such a loop as this: Physics



Hawking’s approximations assume that the radius R of the black
hole is much bigger than the Planck length(
~G/c3

)1/2 ≈ 10−33 cm. For example, a solar mass black hole,
with initial mass of order 1033 grams, will shrink down to a mass of
order 10−5 grams before Hawking’s approximations break down.
We don’t really know what happens at that point, but we presume
that eventually the evaporation ends and we are left with stable
elementary particles.



A fundamental point about Hawking radiation is that the radiation
appears to be thermal even though the black hole could have
formed from a pure state. This has presented a puzzle that drives
much of the research in this field and that to this day is only partly
resolved. Hawking’s approximations are valid for almost the whole
evaporation process and seem to show that the outgoing state is
thermal, ultimately with a very large entropy of order
M/T ∼ GM2 (or about 1076 in the case of a solar mass black
hole). But if the formation and evaporation of the black hole are
described by the ordinary laws of quantum mechanics, then if the
initial state is pure, the final state should also be pure.



Concretely the reason that the Hawking radiation seems to be
thermal even if the black hole is in a pure state is that the
observations of the distant observer amount to observing the
quantum fields only outside the horizon. Even if a black hole
formed from a pure state – so that we can assume that the state
of the whole universe is pure – the quantum fields restricted to
only part of spacetime are in a mixed state. That is the essence of
the Hawking effect.



Let us remember how this works in ordinary quantum mechanics.
We start with a pure state ψAB in a tensor product Hilbert space
HA ⊗HB. We first make the “pure state” density matrix

ρAB = |ψAB〉〈ψAB|

The expectation value of any operator OAB is

〈ψAB|OAB|ψAB〉 = TrABOABρAB.

Note that ρAB is the orthogonal projection operator on the state
ψAB; in particular, it is hermitian, non-negative, satisfies

TrAB ρAB = 1

and has rank 1.



Now suppose we are only going to observe the subsystem A. That
means that we consider only operators of the form
OAB = OA ⊗ 1B. The expectation of this operator in the state
ψAB is

TrAB (OA ⊗ 1B)ρAB = TrAOAρA

where
ρA = TrB ρAB.

In other words, for measurements on system A only, we can use
the density matrix ρA which is obtained from ρAB by taking a
“partial trace” on HB.



System A then has a von Neumann entropy

SA = −Tr ρA log ρA

that in this case is called an “entanglement entropy” because it
arose entirely from the entanglement of system A with another
system B – with the overall state being pure.



The idea that black hole entropy should be understood in such terms was
apparently first put forward by R. Sorkin in 1983 (in a paper that
attracted only modest attention at the time). The idea was just the
following. In a quantum field theory, divide space into two regions A and
B

Let Ψ be the vacuum state, and ρA the “reduced density matrix” of the
vacuum for the state Ψ. One can try to calculate the entanglement
entropy SA. One finds that it is ultraviolet divergent but the coefficient
of the divergence is proportional to the area A of the boundary between
regions A and B.



Sorkin’s idea, in modern language, was that somehow gravity cuts off the
ultraviolet divergence, replacing A∞, which is the answer without gravity,
by the Bekenstein-Hawking answer A/4G . This makes a lot of intuitive
sense, as it matches two ideas:

(1) A/4G is the irreducible entropy of the system for someone who has
access only to the region outside the horizon

(2) the divergence in the entanglement entropy is proportional to A
because it comes from short wavelength modes near the “horizon,” as if
(after cutting off the divergence) the density of quantum degrees of
freedom on the horizon per unit area is 1/4G as in Wheeler’s picture:312 JOHN ARCHIBALD WHEELER THE SEARCH FOR LINKS 313
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blackhole, of Bekenstein number N and horizon area 4NHlogs2, was put together. Symbol,
also, in a broader sense, of the theme that every physical entity, every it, derives from bits.
Reproduced from JGST, p.220.
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Susskind and Uglum (1993) made a simple observation that
strongly supports the idea of interpreting Sout as entanglement
entropy. If we interpret Sout this way, the generalized entropy
defined by Bekenstein is better defined than either term on the
right hand side is separately:

Sgen =
A

4G~
+ Sout.

The second term has an ultraviolet divergence that Sorkin noted.
The first term has a similar problem, because there is an ultraviolet
divergence in the relation between the bare Newton constant G0

and the physical, observed Newton constant G :

1

G~
=

1

G0~
+ cΛ2 + · · · .

Here Λ is an ultraviolet cutoff and c is a constant (at 1-loop level,
c is independent of ~). Susskind and Uglum argued that the
ultraviolet divergences in Sout cancel those in 1/G . Later authors
improved this derivation and confirmed the claim.



Twenty-first century developments have supported these ideas,
though leaving us with plenty of mysteries.

I will use the remaining time to try to explain something of the
modern perspective.



As I have explained, black hole thermodynamics originated with
the mysterious claim that the purely geometric quantity A/4G can
be interpreted as an entropy. As I stressed already, this is a
thermodynamic entropy which is believed to obey a Generalized
Second Law. I also emphasized that the other side of entropy is
the purely microscopic von Neumann entropy SvN = −Tr ρ log ρ.
In general the relation between the microscopic entropy and the
thermodynamic entropy is an inequality

SvN ≤ Sthermal.

Is there a geometric or gravitational formula for the von Neumann
entropy?



In fact, there is a geometric formula for von Neumann entropy.
The first version was discovered by Ryu and Takayanagi (2006)
with later refinements by several groups (notably
Hubeny-Rangamani-Takayanagi; Lewkowycz-Maldacena; and
Engelhardt-Wall).



I will try to motivate the Ryu-Takayanagi formula. The simplest
solution of Einstein’s equations that describes a black hole is the
Schwarzschild solution

ds2 = −
(

1− 2GM

r

)
dt2 +

1

1− 2GM
r

dr2 + r2dΩ2.

This is a good solution for r > 2GM. It describes the gravitational
field exterior to any body that is spherically symmetric, such as the
Sun (to high accuracy). However, if a spherically symmetric body
undergoes gravitational collapse to r < 2GM, the solution is
incomplete because it has a singularity at r = 2GM. Various
researchers (Synge, Eddington, Finkelstein, Kruskal, Szekeres, ...)
discovered in the 1950’s and 1960’s that this is only a coordinate
singularity and that the solution can be continued to r < 2GM.



The full “maximally extended” Schwarzschild solution is quite
remarkable – it describes two asymptotically flat worlds connected
by a “wormhole” (the wormhole is sometimes called an
Einstein-Rosen bridge as Einstein and Rosen discovered part of this
picture in the 1930’s). Here is a cartoon version (depicted via a
“Penrose diagram”:

In drawing this cartoon version, I have assumed a small negative
cosmological constant, which provides a sort of infrared cutoff.



The part of the spacetime that a “right observer” can see and
influence is shown in red

and the part that a “left observer” can see and influence is shown
in blue. These regions are bounded by past and future horizons,
which are diagonal lines in the picture. As understood by
Hartle-Hawking and Israel in the 1970’s, and reformulated in the
2000’s by Maldacena, in this universe there is a natural pure state
(the “thermofield double”), that to an observer on either the left
or the right looks exactly thermal at the Hawking temperature.



According to Bekenstein and Hawking, the entropy of this density
matrix is the horizon area, and for this ideal solution it does not
matter which horizon one picks or where one measures it

However, suppose two observers, one living on the left, and one on
the right, decide to disturb this system. They do this by applying
unitary operators, since that is all that one can do to a quantum
system.



Here we have a two-sided system AB, where A and B represent
the left and right exterior regions of the spacetime, and a pure
state, the Hartle-Hawking-Israel state ΨAB . The combined system
has a pure state density matrix ρAB = |ΨAB〉〈ΨAB | but the left or
right observer separately sees a thermal density matrix

ρA = TrB ρAB , ρB = TrAρAB .

The left observer can manipulate the system by applying a unitary
operator UA to the left side A of the spacetime, and the right
observer can manipulate the system by applying a unitary operator
UB to the right side B.



What happens to the geometry when the left or right observer
applies a unitary transformation? For example, the right observer
can create particles that head into the interior



But the problem is time symmetric so the right observer can also
create a state that had additional particles in the past



When I say the right observer can throw in “particles,” these
particles can just as well be macroscopic objects like tables and
chairs. Throwing in tables and chairs increases the black hole mass
and therefore the horizon area, so it increases the
Bekenstein-Hawking entropy

Sthermal =
Ahorizon

4G
.



In the new spacetime that the right observer creates, the black hole
mass is bigger than before and the horizon moves outward; the
past and future horizons are no longer given by the diagonal lines
that represented the horizons in the original Schwarzschild solution:

(I have not tried to draw the figure realistically to show the new
horizons.)



The left observer can also manipulate the state

All these manipulations change the state:

ΨAB → UA ⊗ UBΨAB .



The two observers can do a lot to the system, including increasing
the thermodynamic entropy, but there is a limit to what they can
do. Unitary evolution will only change the left or right density
matrices by conjugation

ρA → UAρAU
−1
A , ρB → UBρBU

−1
B

and this will not change the von Neumann or entanglement entropy

SvN = −Tr ρA log ρA = −Tr ρB log ρB .



If von Neumann entropy can be represented by something in
geometry, it will be something that observers on the two sides
cannot change. There is only one place in the spacetime that the
observers cannot manipulate. It is the “bifurcation surface”

which in the original
Schwarzschild solution was the surface where the two horizons
cross. The observers on left and right can do nothing to change
the area (or even the geometry) of this surface, though they can
make all sorts of manipulations on its left or right.



Since the picture has become rather busy, let us go back to where
we started:

The only place in this
picture that the left and right hand observers cannot change the
geometry is the bifurcation surface where the two horizons cross.
So it is natural that the von Neumann entropy should be the area
of this surface, if it is any kind of area.



In a formula for the von Neumann entropy, we shouldn’t refer to
the bifurcation surface as “the horizon” because once the
spacetime is perturbed on left and right, this surface is not a
horizon any longer. But it is an extremal surface, that is a surface
whose area is stationary among all nearby surfaces. And it remains
extremal in the more general spacetime that left and right
observers can create by their manipulations. This follows from the
Einstein equations.



Thus the idea of Ryu and Takayanagi (in the type of example that
I have been describing) is that the von Neumann entropy of the
left or right observers is the area of an extremal surface that
separates the two observers:

SvN ≈
Aext

4G

compared to the thermodynamic entropy which is given by

Sthermal ≈
Ahorizon

4G
.

(Both formulas have quantum corrections, which is why I’ve
written ≈ rather than =.) One can use Einstein’s equations to
prove that the extremal surface is always behind the horizon,
consistent with the expectation

SvN ≤ Sthermal.



There is a subtlety, however: there might be multiple extremal
surfaces between the left and right boundaries of the figure.
According to Ryu and Takayanagi, in that case the von Neumann
entropy is the area of an extremal surface of minimal area that
separates the left and right:

SvN ≈
Amin

4G
.

Once one realizes that one has to talk about minimal area (among
extremal surfaces), it becomes clear that there might be a phase
transition in the location of the Ryu-Takayanagi surface. As a black
hole evaporates, there might be a phase transition in the location
of the minimal surface that represents the von Neumann entropy.



Just such a phase transition in the field of an evaporating black
hole was found in 2019 (Almheiri, Engelhardt, Marolf, and
Maxfield; Penington) and resolved some of the paradoxes that arise
in trying to reconcile the thermal nature of the Hawking process
with quantum mechanical unitarity. I want to give at least some
idea of why a phase transition was needed.



Remember that in the real world, a black hole forms in a state of
very low entropy. Let us idealize the situation by imagining that
the black hole forms in a state of zero entropy, that is, a quantum
mechanical pure state ΨB(t = 0). Then let the black hole
evaporate for a long time t. It emits radiation that is very nearly
thermal according to Hawking. Hence the entropy of the radiation
grows roughly in proportion to t. At time t, the black hole is no
longer in a pure state, but if quantum mechanics is correct, then
there is a pure state ΨBR(t) that describes the joint state of the
radiation R and the black hole B. At this point, either the black
hole or the radiation can be described by a “mixed state” density
matrix

ρB = TrR |ΨBR〉〈ΨBR |, ρR = TrB |ΨBR〉〈ΨBR |.

Now, it is a basic fact of quantum mechanics that in such a
situation the von Neumann entropy of ρB and ρR are equal:

−TrB ρB log ρB = −TrR ρR log ρR .



In fact, more generally it is true that ρB and ρR have the same
eigenvalues. That is because the canonical form of a joint state
ΨBR ∈ HB ⊗HR , up to unitary transformations of the two Hilbert
spaces HB and HR , is

ΨBR =
∑
i

λiχi (B)⊗ χ̃i (R),

where χi (B) and χ̃i (R) are states in HB and HR , respectively, that
we can assume to be orthonormal. Then the density matrices are

ρB =
∑
i

|λi |2|χi (B)〉〈χi (B)|, ρR =
∑
i

|λi |2|χi (R)〉〈χi (R)|,

so both density matrices have the same eigenvalues |λi |2 and the
same von Neumann entropy

S(ρB) = S(ρR) = −
∑
i

|λi |2 log |λi |2.



Now in the case of an astrophysical black hole, the evaporation is a
very slow process. The temperature that we found was of order
1/RS where RS = 2GM is the Schwarzschild radius of the black
hole. That means that in each time interval RS the black hole
emits an energy of order 1/RS so the luminosity is of order

1

R2
S

∼ 1

G 2M2
.

Thus the black hole evolves according to (roughly)

dM

dt
= − 1

G 2M2

and the time for its mass to change appreciably is of order

∆t =
M3

G 2
,

which for a solar mass black hole is very roughly 1071 seconds.



Anyway, for this very long time, the von Neumann entropy SvN of
the black hole keeps slowly growing, and the von Neumann entropy
of the radiation likewise keeps growing Meanwhile the black hole
mass is slowly shrinking, and therefore its thermodynamic entropy,
which is the Bekenstein-Hawking entropy Sthermal = A

4G , is slowly
decreasing. As Don Page pointed out just over 30 years ago, there
is no problem with this until a time called the Page time at which
a naive extrapolation would violate the fundamental inequality

SvN ≤ Sthermodynamic.

When we reach the Page time, the claim that the radiation is
purely thermal and that SB = SvN(R) is steadily increasing has to
break down. Rather, upon further evaporation of the black hole,
with its mass continuing to decrease, its thermodynamic entropy
decreases and its von Neumann entropy must therefore decrease in
order to satisfy the inequality SvN ≤ Sthermodynamic,



Page argued that what should happen is that once the Page time
is reached and the inequality

SvN ≤ Sthermodynamic

is saturated, it will remain saturated for all times. The idea is that
we started with a black hole in a pure state – thus if one is capable
of measuring its microstate, one would say that the black hole is
far thermal equilibrium – that is, it is far from having a thermal
density matrix. But when we reach the Page time, and saturate
the inequality SvN ≤ Sthermodynamic, the black hole is actually in
thermal equilibrium, with (very nearly) a thermal density matrix.
Once the black hole reaches true thermal equilibrium, one would
expect that this would be maintained as the black hole evaporates
adiabatically.



Thus the evolution of SvN(B) is proposed to follow a “Page curve”:



This isn’t really an exotic claim, in the following sense. It would be
very hard to initialize a burning lump of coal in a quantum
mechanical pure state, but if one could do that, then theoretically
one would expect its von Neumann entropy to follow a Page-like
curve, for basically the reasons that I’ve explained. The black hole
is different in that nature does initialize black holes in states of
very low SvN.



In the limit that the initial black hole hole mass is very large, the
Page curve

is believed to converge to a true phase transition. And this phase
transition has been interpreted as a phase transition in the
quantum extremal surface that computes SvN.



According to Penington and also Almheiri, Engelhardt, Marolf, and
Maxfield (2019) the quantum extremal surface is the empty
surface prior to the Page time, and at the Page time it jumps to a
location very near the black hole horizon. In coming lectures, I will
speak a little more of the basis for this claim, and also I will
describe a little more what has not been explained.


