

中國科学院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

University of Chinese Academy of Sciences

Recent results from BESII

Han Miao

Institute of High Energy Physics

University of Chinese Academy of Sciences

Milan, Italy

2023.6.21

Beijing Electron Positron Collider II (BEPCII)

beam energy: 1.0 – 2.3(2.45) GeV

BESIII

detector

2020: energy upgrade to 2.45 GeV & top-up mode 2004: started BEPCII upgrade, BESIII construction 2008: test run 2009 - now: BESIII physics run

LINAC

 1989-2004 (BEPC): L_{peak}=1.0x10³¹ /cm²s

 2009-now (BEPCII): L_{peak}= 1.1 x10³³/cm²(3/2023)

BESIII spectrometer

- > MDC:
 - Material < $0.05X_0$, $\sigma_{xy} < 130 \,\mu m$
 - $\sigma(p)/p < 0.5\%@1 \, \text{GeV}/c$
 - $\sigma_{dE/dx} < 6\%$

≻ TOF:

- $\sigma_t \sim 70$ ps (barreal two layers)
- $\sigma_t \sim 110(60)$ ps (endcap)
- ≻ EMC:
 - $\sigma_E / \sqrt{E} < 2.5\% @ 1 \text{ GeV}$
 - $\sigma_x < 0.6 \text{ cm}$
- > MUC
 - No. of layers (barrel/endcap) 9/8
 - Cut-off momentum (MeV/c) 0.4

BESIII data sample

2009: 106M $\psi(2S)$ Many topics! 225M J/w spectroscopy **2010**: 975 pb⁻¹ at $\psi(3770)$ **2011**: 2.9 fb⁻¹ (total) at $\psi(3770)$ (light and heavy), 482 pb⁻¹ at 4.01 GeV flavor physics, **2012**: 0.45B (total) $\psi(2S)$ new physics, 1.3B (total) J/w R scans, 2013: 1092 pb⁻¹ at 4.23 GeV τ physics, etc. 826 pb⁻¹ at 4.26 GeV 540 pb-1 at 4.36 GeV $10 \times 50 \text{ pb}^{-1} \text{ scan } 3.81 - 4.42 \text{ GeV}$ 2014: 1029 pb⁻¹ at 4.42 GeV 110 pb⁻¹ at 4.47 GeV 110 pb⁻¹ at 4.53 GeV 48 pb⁻¹ at 4.575 GeV 567 pb⁻¹ at 4.6 GeV 0.8 fb⁻¹ R-scan 3.85 - 4.59 GeV **2015**: R-scan 2 - 3 GeV + 2.175 GeV **2016**: \sim 3fb⁻¹ at 4.18 GeV (for D_s) **2017**: $7 \times 500 \text{ pb}^{-1} \text{ scan } 4.19 - 4.27 \text{ GeV}$ **2018**: more J/ψ (and tuning new RF cavity) **2019**: 10B (total) J/w $8 \times 500 \text{ pb}^{-1} \text{ scan } 4.13, 4.16, 4.29 - 4.44 \text{ GeV}$ 2020: 3.8 fb⁻¹ scan 4.61-4.7 GeV **2021**: 2 fb⁻¹ scan **4.74-4.95 GeV**; 2.55B ψ (2S) **2022**: 5.1 fb⁻¹ at $\psi(3770)$ **2023**: ~8 fb⁻¹ will be taken at $\psi(3770)$

BESIII publications (May 9, 2023)

500 publications!

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- D mesons
- f_D and f_{Ds}
- $D_0 D_0$ mixing
- Charm baryons

R value at **BESIII**

- 14 fine-scan data points from 2.23-3.67 GeV
- The accuracy is better than 2.6% below 3.1 GeV and 3.0% above
- Larger than the pQCD prediction by 2.7σ between 3.4-3.6 GeV
- Important input for the SM-prediction of g-2

Helicity amplitude analysis of $\chi_{cJ} \rightarrow \phi \phi$

- Predictions are smaller than measured branching fraction [Phys. Lett. B 93 (1980) 119, Phys. Lett. B 93 (1980) 119, Phys. Lett. B 93 (1980) 119]
- BESIII measured $\chi_{cJ} \rightarrow \phi \phi$ before without amplitude analysis [Phys.Rev.Lett. 107 (2011) 092001]
- The analysis of the ϕ meson polarization: probe hadronic-loop effects in the $\chi_{cJ} \rightarrow \phi \phi$ decay [Phys. Lett. B 93 (1980) 119]
- The ratios of the helicity amplitudes are effective in the discrimination between the proposed models [Phys. Lett. B 611 (2005) 123, Phys. Lett. B 611 (2005) 123, Phys. Lett. B 93 (1980) 119]

Decay channel	$\chi_{c0} o \phi \phi$		$\chi_{c2} ightarrow \phi \phi$	
Parameter	x	ω_1	ω_2	ω_4
pQCD	0.293 ± 0.030	0.812 ± 0.018	1.647 ± 0.067	0.344 ± 0.020
${}^{3}P_{0}$	0.515 ± 0.029	1.399 ± 0.580	0.971 ± 0.275	0.406 ± 0.017
$D\bar{D}$ loop	0.359 ± 0.019	1.285 ± 0.017	5.110 ± 0.057	0.465 ± 0.002

Table 1. Numerical results of predictions from pQCD [6], ${}^{3}P_{0}$ [9] and $D\bar{D}$ loop models [10].

- $x = |F_{1,1}^0/F_{0,0}^0|$ for χ_{c0}
- $\omega_1 = |F_{0,1}^2/F_{0,0}^2|, \omega_2 = |F_{1,-1}^2/F_{0,0}^2|, \omega_4 = |F_{1,1}^2/F_{0,0}^2|$ for χ_{c2} ($F_{\lambda_1,\lambda_2}^{J=0,2}$ are the helicity amplitudes)

Helicity amplitude analysis of $\chi_{cJ} \rightarrow \phi \phi$

- > Properties of χ_{c0} :
 - $m_{\chi_{c0}} = 3415.42 \text{ MeV}/c^2$
 - $\Gamma_{\chi_{c0}} = 11.4 \text{ MeV}/c^2$

For χ_{c0} :

- $x = |F_{1,1}^0/F_{0,0}^0| = 0.299 \pm 0.003 \pm 0.019$
- > For χ_{c1} (statistical uncertainty only):
 - $u_1 = |F_{1,0}^1/F_{0,1}^1| = 1.05 \pm 0.05$
 - $u_2 = |F_{1,1}^1/F_{1,0}^1| = 0.07 \pm 0.04$

\succ For χ_{c2} :

- $\omega_1 = |F_{0,1}^2/F_{0,0}^2| = 1.265 \pm 0.054 \pm 0.079$
- $\omega_2 = |F_{1,-1}^2/F_{0,0}^2| = 1.450 \pm 0.097 \pm 0.104$
- $\omega_4 = |F_{1,1}^2/F_{0,0}^2| = 0.808 \pm 0.051 \pm 0.009$

Branching fractions

$$B(\chi_{c0} \to \phi\phi) = (8.59 \pm 0.27 \pm 0.20) \times 10^{-4}$$

$$B(\chi_{c1} \to \phi\phi) = (4.26 \pm 0.13 \pm 0.15) \times 10^{-4}$$

$$B(\chi_{c2} \to \phi\phi) = (12.67 \pm 0.28 \pm 0.33) \times 10^{-4}$$

Helicity amplitude analysis of $\chi_{cJ} \rightarrow \phi \phi$

> Discussions:

- For the decay of χ_{c1} , no evidence of identical particle symmetry breaking
- For the deday of χ_{c0} , consistent with the pQCD prediction
- For the decay of χ_{c2} , the $D\overline{D}$ loop model ruled out due to the large deviation, while the other models cannot describe the measurements, either.
- Using about 2.7 billion $\psi(3686)$ accumulated at BESIII now, more attractive results will be reported in future

.2

Evidence for the $\eta_c(2S) \rightarrow \pi^+\pi^-\eta$

• With the branching fraction $Br(\eta_c \rightarrow \pi^+\pi^-\eta) = (1.7 \pm 0.5)\%$, the ratio of the branching fractions of η_c and $\eta_c(2S)$ decaying into $\pi^+\pi^-\eta$ is calculated to be

 $\frac{Br(\eta_c(2S) \to \pi^+ \pi^- \eta)}{Br(\eta_c \to \pi^+ \pi^- \eta)} = 0.25 \pm 0.20$

- Combining other hadronic decays, the average ratio is determined to be 0.30 ± 0.10
- Using the 2.7 billion ψ(3686) events collected at BESIII, more precise results will be reported
 Phys.Rev.D 107 (2023) 5, 052007

Observation of $\psi(3770) \rightarrow \eta J/\psi$

- Two treatments of the $\psi(3770)$ resonant decay amplitude is considered:
 - ✓ $\psi(3770)$ is coherent with the other amplitudes:

$$\sigma_{\rm co.} = |C \cdot \sqrt{\Phi(s)} + e^{i\phi_1} BW_{\psi(3770)} + e^{i\phi_2} BW_{\psi(4040)} + e^{i\phi_3} BW_{Y(4230)} + e^{i\phi_4} BW_{Y(4390)}|^2$$

✓ $\psi(3770)$ is incoherent with the other amplitudes:

$$\sigma_{\rm co.} = |\mathsf{BW}_{\psi(3770)}|^2 + |\mathcal{C} \cdot \sqrt{\Phi(s)} + e^{i\phi_2}\mathsf{BW}_{\psi(4040)} + e^{i\phi_3}\mathsf{BW}_{Y(4230)} + e^{i\phi_4}\mathsf{BW}_{Y(4390)}|^2$$

- Incoherent: $Br(\psi(3770) \rightarrow \eta J/\psi) = (8.7 \pm 1.0_{\text{stat}} \pm 1.0_{\text{sys}}) \times 10^{-4}$, close to the result of CLEO
- Coherent: Four solutions with branching fraction varying between $Br(\psi(3770) \rightarrow \eta J/\psi) = (11.2 \pm 5.8_{stat} \pm 1.1_{sys}) \times 10^{-4}$ and $(11.6 \pm 6.0_{stat} \pm 1.1_{sys}) \times 10^{-4}$ (substantial interference effect with highly excited vector states)

Observation of the decay $\chi_{cJ} \rightarrow \Omega \overline{\Omega}$

• Signal yield is obtained by an unbinned maximum likelihood fit to the recoil mass spectrum of the radiative photon (RM_{γ})

•
$$Br(\chi_{cJ} \to \Omega^{-}\overline{\Omega}^{+}) = \frac{N_{\chi_{cJ}}^{ODS}}{N_{\psi(3686)} \cdot Br(\psi(3686) \to \gamma \chi_{cJ}) \cdot \varepsilon}$$

Phys.Rev.D 107 (2023) 9, 092004

Mode	$N_{\chi_{cJ}}^{ m obs}$	$\epsilon_{\chi_{cJ}}(\%)$	Sig. (σ)	$\mathcal{B}(\times 10^{-5})$
χ_{c0}	284 ± 44	3.05	5.6	3.51 ± 0.54
χ_{c1}	277 ± 42	7.02	6.4	1.49 ± 0.23
χ_{c2}	1038 ± 56	8.91	18	4.52 ± 0.24

Observation of the decay $\psi(3686) \rightarrow e^+e^-\eta_c$

- Only e^+e^- pairs reconstructed. Signal yield obtained by fitting recoil mass of e^+e^-
- $Br(\psi(3686) \rightarrow e^+e^-\eta_c) = (3.77 \pm 0.40_{\text{stat.}} \pm 0.18_{\text{syst.}}) \times 10^{-5}$

New states at BESIII

w X(3872) production process $e^+e^- \rightarrow \omega X(3872)$

radiative production via $e^+e^- \rightarrow \gamma X(3872)$

- A new X(3872) production process $e^+e^- \rightarrow \omega X(3872)$ is observed for the first time • $M_{X(3872)} = 3870.2 \pm 0.7 \pm 0.3 \text{ MeV}/c^2$
- The line shape of the cross section indicates that the observed $\omega X(3872)$ signals may be from decays of some nontrivial structures.

\sqrt{s} (GeV)	$\mathcal{L}_{int}(pb^{-1})$	$N_{\rm sig}$	$\epsilon(1+\delta)$ (%)	$\sigma^{B}(pb)$	$\sigma^{B}_{ m up}(pb)$	Significance
4.661	529.63	$0.33^{+1.36}_{-0.33}$	28.3	$0.5^{+2.1}_{-0.5}\pm 0.1\pm 0.2$	5.6	2
4.682	1669.31	$8.00^{+3.34}_{-2.68}$	24.6	$4.6^{+1.9}_{-1.5} \pm 0.4 \pm 1.5$	11.5	3.4σ
4.699	536.45	$0.00^{+0.95}_{-0.00}$	27.0	$0.0^{+1.6}_{-0.0}\pm 0.0\pm 0.0$	3.3	
4.740	164.27	$1.67^{+1.77}_{-1.10}$	21.8	$10.9^{+11.6}_{-7.2} \pm 1.0 \pm 3.5$	40.6	1.0σ
4.750	367.21	5.00+2.58	22.4	$14.2^{+7.4}_{-55} \pm 1.4 \pm 4.5$	38.2	3.1σ
4.781	512.78	$1.00^{+1.36}_{-0.70}$	31.6	$1.5^{+2.0}_{-1.0} \pm 0.2 \pm 0.5$	6.5	0.7σ
4.843	527.29	$4.67^{+2.58}_{-1.92}$	26.7	$7.8^{+4.3}_{-3.2} \pm 0.7 \pm 2.5$	21.1	2.6σ
4.918	208.11	$1.00^{+1.36}_{-0.70}$	22.6	$5.0^{+6.8}_{-3.5}\pm 0.4\pm 1.6$	21.7	0.7σ
4.951	160.37	$0.00^{+0.95}_{-0.00}$	20.4	$0.0^{+6.8}_{-0.0}\pm 0.0\pm 0.0$	14.7	
						19

Cross section of $e^+e^- ightarrow \pi^+\pi^- J/\psi$

Phys.Rev.Lett. 118 (2017) 9, 092001

- Y(4230) and Y(4320) observed with > 10σ
- Structure around 4 GeV can be fitted better by a BW (an expotential function is used before)
- Evidence ~3σ of a structure at higher energies (ψ(4415)? Y(4500)?)
- Taking higher states in the fit, the parameters of Y(4320) changed

Μ _{Y(4230)} Γ _{Y(4230)}	= =	4221.4 ± 1.5 ± 2.0 MeV/c ² 41.8 ± 2.9 ± 2.7MeV
M _{Y(4320)}	=	4298 ± 12± 26 MeV/c ²
Γ _{Y(4320)}	=	127 ± 17± 10 MeV

Cross section of $e^+e^- \rightarrow K^+K^-J/\psi$

- Try to investigate the strange content inside Y(4230) [Phys.Rev.D 105 (2022) 3, L031506]
- First observation of $Y(4230) \rightarrow K^+K^-J/\psi$

$$0.02 < \frac{Br(Y(4230) \to K^+K^-J/\psi)}{Br(Y(4230) \to \pi^+\pi^-J/\psi)} < 0.26$$

- Resonance Y(4500)>5 σ , the parameters are consistent with
 - ✓ 5S-4D mixing scheme [Phys.Rev.D 99 (2019) 11, 114003]
 - ✓ heavy-antiheavy hadronic molecules model [Progr.Phys. 41 (2021) 65-93]
 - ✓ Lattice QCD result for a $(cs\overline{cs})$ state [Phys.Rev.D 73 (2006) 094510]

Chin.Phys.C 46 (2022) 11, 111002

Cross section of $e^+e^- \rightarrow K_S K_S J/\psi$

Resonance	Significance	Mass (MeV/c ²)	Width (MeV/c²)
Y(4230)	26σ	$4226.9 \pm 6.6 \pm 22.0$	$71.7 \pm 16.2 \pm 32.8$
Y(4500)	$< 1.4\sigma$	not clear due to	o low statistics
Y(4710)	26σ	$4704.0 \pm 52.3 \pm 69.5$	$183.2 \pm 114.0 \pm 96.1$

- If assuming Y(4710) as $\psi(5S)$, the measured mass will be in favor of the linear potential model predictions [Phys.Rev.D 98 (2018) 1, 016010]
- Assymetric Gaussian fit $(3.1\sigma$ hint for isospin violation):

$$\frac{\sigma^{\text{BORN}}(e^+e^- \to K_S K_S J/\psi)}{\sigma^{\text{BORN}}(e^+e^- \to K^+ K^- J/\psi)} = 0.338^{+0.035}_{-0.028}$$

• With considering the three-body phase space (1.9 σ hint for isospin violation):

$$\frac{\sigma^{\text{BORN}}(e^+e^- \to K_S K_S J/\psi)}{\sigma^{\text{BORN}}(e^+e^- \to K^+ K^- J/\psi)} = 0.426^{+0.038}_{-0.031} \pm 0.018$$

Cross section of $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)$

- Most precise measurement of the parameters of $\psi_2(3823)$: $M = 3823.12 \pm 0.43 \pm 0.13 \text{ MeV}/c^2$ $\Gamma < 2.9 \text{ MeV} (at 90\% \text{ CL})$
- First observation of vector Y states decaying into D-wave charmonium state
- Taking $\sigma(Y(4660) \rightarrow \pi^+ \pi^- \psi(3686))$ measured by BESIII [Phys.Rev.D 104 (2021) 5, 052012]

 $\frac{\Gamma(Y(4660) \to \pi^+ \pi^- \psi_2(3823))}{\Gamma(Y(4660) \to \pi^+ \pi^- \psi(3686))} \sim 20\%$

- Conflict with
- $f_0(980)\psi(3686)$ hadron molecule interpretation [Phys.Lett.B 665 (2008) 26-29]
- baryonium picture that explain Y(4660) as a baryonium of $\Sigma^0 \overline{\Sigma}^0$ [J.Phys.G 35 (2008) 075008]
- diquark-antidiquark tetraquark explanation that explain Y(4660) as a radial excitation of Y(4260) [Phys.Rev.D 89 (2014) 114010]

Cross section of $e^+e^- ightarrow D^{*0}D^{*-}\pi^+$

Resonance	Mass (MeV/c ²)	Width (MeV/c²)
Y(4210)	$4209.6 \pm 4.7 \pm 5.9$	$81.6 \pm 17.8 \pm 9.0$
Y(4470)	$4469.1 \pm 26.2 \pm 3.6$	$246.3 \pm 36.7 \pm 9.4$
Y(4660)	$4675.3 \pm 29.5 \pm 3.5$	$218.3 \pm 72.9 \pm 9.3$

- *R*₁: if assuming the Y(4230) [Adv.High Energy Phys. 2018 (2018) 5428734]
 - $\Gamma(D^0D^{*-}\pi^+) \sim \Gamma(D^{*0}D^{*-}\pi^+)$
 - Γ(e⁺e⁻)>40 eV, disfavoring the hybrid interpretation [Chin.Phys.C 40 (2016) 8, 081002]
- R_2 : consistent with Y(4500) observed in $e^+e^- \rightarrow$

K^+K^-J/ψ [Chin.Phys.C 46 (2022) 11, 111002]

- $\Gamma(D^{*0}D^{*-}\pi^+)$ becomes two orders of magnitude of $\Gamma(K^+K^-J/\psi)$
- contradicts with hidden-strangeness tetraquark
 conjecture [Phys.Rev.D 73 (2006) 094510, Progr.Phys. 41 (2021) 65-93, Phys.Rev.D 107 (2023) 1, 016001]
- R₃: consistent with Y(4660) [Phys.Rev.D 104 (2021) 5, 052012]
 - first observation of open charm decay mode
- 24

Cross section of $e^+e^- \rightarrow D^{*+}D^{*-}$

- *R*₁:
 - ✓ consistent with Y(4160) [Phys.Lett.B 660 (2008) 315-319, Phys.Rev.Lett. 111 (2013) 11, 112003,]
 - ✓ consistent also with Y(4230) considering the systematic uncertainty [Phys.Rev.D 106 (2022) 7, 072001], which will indicate Y(4230) couples more strongly to open charm final states than to charmonia
- R₂:
 - ✓ consistent with $\psi(4415)$
 - ✓ the first time to observe $\psi(4415)$ in $D^{*+}D^{*-}$ final state

Resonance	Mass (MeV/c ²)	Width (MeV/c²)
Y(4160)/Y(4230)	$4186.5 \pm 9.0 \pm 30$	$55 \pm 17 \pm 53$
ψ (4415)	$4469.1 \pm 26.2 \pm 3.6$	$246.3 \pm 36.7 \pm 9.4$

Cross section of $e^+e^- \rightarrow \gamma \phi J/\psi$

- For the case of $\phi \chi_{c1}$
 - \checkmark No obvious resonance observed
- For the case of $\phi \chi_{c2}$
 - ✓ Evidence for Y(4660) is observed with 3.1σ fitted by a single BW ($M = 4672.8 \pm 10.8 \pm 3.9 \text{ MeV}/c^2$, $\Gamma = 93.2 \pm 19.8 \pm 9.4 \text{ MeV}$)
 - ✓ 3.6 σ fitted by the coherent sum of a BW and continuum ($M = 4701.8 \pm 10.9 \pm 2.7 \text{ MeV}/c^2$, $\Gamma = 30.5 \pm 22.3 \pm 14.6 \text{ MeV}$)
 - ✓ The first evident structure observed in $\phi \chi_{c2}$ system

No evident hint for X(4140), X(4274) and X(4500) in $\phi J/\psi$ system

Y states at **BESIII**

$Z_{cs}(3985)^{-}$ in $e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

- An enhancement near the $D_s^- D^{*0}$ and $D_s^{*-} D^0$ mass thresholds in the K^+ recoil-mass spectrum
- match the hypothesis of $Z_{cs}(3985)^-$

 $m_{\text{pole}}[Z_{cs}(3985)^{-}] = (3982.5^{+1.8}_{-2.6} \pm 2.1) \text{ MeV}/c^2$

 $\Gamma_{\text{pole}} = [Z_{cs}(3985)^{-}] = (12.8^{+5.3}_{-4.4} \pm 3.0) \text{ MeV}$

- Mostly likely $c\overline{c}s\overline{u}$
- The first *Z*_{cs} tetraquark candidate observed
- Consistent with the prediction:
 - relativistic diquark-antidiquark picture [Eur. Phys. J. C (2008) 58: 399–405]
 - ✓ $D_s \overline{D}^* D_s^* \overline{D}$ molecule [J. Korean Phys. Soc. 55, 424 (2009)]
 - ✓ QCD sum rules [Phys. Rev. D 88, 096014 (2013)]
 - initial chiral particle emission mechanism [Phys. Rev. Lett. 110, 232001 (2013)]

Phys. Rev. Lett. 126, 102001 (2021)

lence of $Z_{cs}(3985)^0$ in $e^+e^- \to K_S^0(D_s^+D^{*-} + D_s^{*+}D^-)$

• Evidence of a neutral open-strange hidden-charm state

 $Z_{cs}(3985)^0$

 $m[Z_{cs}(3985)^0] = (3992.2 \pm 1.7 \pm 1.6) \text{ MeV}/c^2$

 $\Gamma = [Z_{cs}(3985)^0] = (7.7^{+4.1}_{-3.8} \pm 4.3) \text{ MeV}$

- Mass larger than $Z_{cs}(3985)^-$, consistent with theoretical prediction [Nucl.Phys.B 968 (2021) 115450]
- Mostly likely $c\overline{cs}d$
- Born cross sections of $e^+e^- \rightarrow \overline{K}{}^0Z_{cs}(3985)^0 + c. c.$ is consistent with those of $e^+e^- \rightarrow K^-Z_{cs}(3985)^+ + c. c.$ [Phys. Rev. Lett. 126, 102001 (2021)]
- The isospin partner of $Z_{cs}(3985)^+$

earch for charged Z'_{cs} in $e^+e^- \rightarrow K^+D_s^{*-}D^{*0} + c.c.$

 $m[Z_{cs}^{'-}] = (4123.5 \pm 0.7_{\text{stat.}} \pm 4.7_{\text{syst.}}) \text{ MeV}/c^2$

Z_c states at BESIII

PRL 110, 252001 (2013)

PRL 115, 112003 (2015)

 $e^+e^- \rightarrow \pi^0 \pi^0 I/\psi$

Partial wave analysis of $J/\psi o \gamma \eta \eta'$

- Quasi two-body decay amplitudes in the sequential decay processes $J/\psi \rightarrow \gamma X, X \rightarrow \eta \eta', J/\psi \rightarrow \eta X, X \rightarrow \gamma \eta'$ and $J/\psi \rightarrow \eta' X, X \rightarrow \gamma \eta$ are constructed using the covariant tentor formalism
- All kinematically allowed known resonances with 0^{++} , 2^{++} , 4^{++} ($\eta\eta'$) and 1^{+-} , 1^{-+} ($\gamma\eta^{(\prime)}$) are considered
- 1^{-+} in $\eta\eta'$ system is also considered (η/η' not identical particle)

Observation of exotic isoscalar meson $\eta_1(1855)$

Resonance	$M ({\rm MeV}/c^2)$	Γ (MeV)	B.F.($\times 10^{-5}$)	Sig.
$f_0(1500)$	1506	112	$1.81 \pm 0.11 \substack{+0.19 \\ -0.13}$	> 30 <i>o</i>
$f_0(1810)$	1795	95	$0.11\pm0.01^{+0.04}_{-0.03}$	11.1σ
$f_0(2020)$	$2010\pm6^{+6}_{-4}$	$203\pm9^{+13}_{-11}$	$2.28\pm0.12^{+0.29}_{-0.20}$	24.6σ
$f_0(2330)$	$2312\pm7^{+7}_{-3}$	$65\pm10^{+3}_{-12}$	$0.10\pm0.02^{+0.01}_{-0.02}$	13.2σ
$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188 \pm 18^{+3}_{-8}$	$0.27 \pm 0.04^{+0.02}_{-0.04}$	21.4 <i>σ</i>
$f_2(1565)$	1542	122	$0.32\pm0.05^{+0.12}_{-0.02}$	<u>8.7</u> σ
$f_2(2010)$	$2062\pm6^{+10}_{-7}$	$165\pm17^{+10}_{-5}$	$0.71 \pm 0.06 \substack{+0.10 \\ -0.06}$	13.4σ
$f_4(2050)$	2018	237	$0.06\pm0.01^{+0.03}_{-0.01}$	4.6σ
0 ⁺⁺ PHSP	• • •		$1.44 \pm 0.15^{+0.10}_{-0.20}$	15.7σ
$h_1(1415)$	1416	90	$0.08\pm0.01^{+0.01}_{-0.02}$	10.2σ
$h_1(1595)$	1584	384	$0.16\pm0.02^{+0.03}_{-0.01}$	9.9 <i>σ</i>

- Assuming $\eta_1(1855)$ is an additional resonance, scans of with different masses and widths
- $M_{\eta_1(1855)} = 1855 \pm 9^{+6}_{-1} \text{ MeV}/c^2$
- $\Gamma_{\eta_1(1855)} = 188 \pm 18^{+3}_{-8} \text{ MeV}$
- Some poential models:
 - hybrid meson [Chin.Phys.C 46 (2022) 5, 051001, Chin.Phys.Lett. 39 (2022) 5, 051201]
 - ✓ tetraquark [Phys.Rev.D 106 (2022) 7, 074003]
 - ✓ Molecule [Nucl.Phys.A 1030 (2023) 122571]

Phys.Rev.Lett. 129 (2022) 19, 192002 Phys.Rev.D 106 (2022) 7, 072012

X(2600) in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

Phys.Rev.Lett. 129 (2022) 4, 042001

- 10B J/ψ events are analyzed, where X(2120) and X(2370) are confirmed
- A new state **X**(2600) in $\pi^+\pi^-\eta'$ final states is observed with significance >20 σ , which is correlated to a structure @1.5 GeV/ c^2 in $M(\pi^+\pi^-)$
- Simultaneous fit to $M(\pi^+\pi^-\eta')$ and $M(\pi^+\pi^-)$: interference of $f_0(1500)$ and X(15??) in $\pi^+\pi^-$
- X(2600): 0⁻⁺ or 2⁻⁺ is favored. η radial excitation, or exotics?
- X(1540): $f'_2(1525)$ or $f_2(1565)$?

EM Dalitz Decay of $J/\psi \rightarrow e^+e^-\pi^+\pi^-\eta'$

Phys.Rev.Lett. 129 (2022) 2, 022002

Branching fractions of J	$/\psi \to e^+ e^- X, X \to \pi^+ \pi^- \eta'$
X = X(1835) (solution I)	$(3.58 \pm 0.19 \pm 0.16) \times 10^{-6}$
(solution II)	$(4.43 \pm 0.23 \pm 0.19) \times 10^{-6}$
X = X(2120)	$(0.82 \pm 0.12 \pm 0.06) \times 10^{-6}$
X = X(2370)	$(1.08 \pm 0.14 \pm 0.10) \times 10^{-6}$

- Observation of X(1835), X(2120), and X(2370) in EM Dalitz decays
- First measurement of the TFF between J/ψ and X(1835)

 $\frac{d\Gamma(J/\psi \to X(1835)e^+e^-)}{dq^2\Gamma(J/\psi \to X(1835)\gamma)} = |F(q^2)|^2 \times [\text{QED}(q^2)],$

$$F(q^2) = \frac{1}{1 - q^2 / \Lambda^2}$$

$$\Lambda = 1.75 \pm 0.29 \pm 0.05 \text{ GeV}/c^2$$

X(2085) in $e^+e^- \rightarrow pK\overline{\Lambda}$

arxiv: 2303.01989

- $p\overline{\Lambda}$ resonance parameters and spin-parity:
 - ➢ pole mass: (2086±4±6) MeV/c²
 - \succ pole width: (56±5±16) MeV
 - ➤ favor 1⁺
- no corresponding excited kaon candidates in experiment or in quark model prediction
- could be an exotic state

Source	$M_{\rm pole}~({\rm MeV})$	$\Gamma_{\rm pole} \ ({\rm MeV})$
Radius d	4.8	15.2
Excited Σ states	2.7	4.8
Resonance parameters	0.8	1.7
$ \cos \theta_K $ requirement	0.4	0.2
$\Lambda(\bar{\Lambda})$ signal mass window	0.8	1.2
Background estimation	1.3	2.0
Mass resolution	0.3	0.2
Total	5.8	16.2

$\eta(1405)/\eta(1475)$ in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \pi^0$

JHEP 03 (2023) 121

- Result from mass independent and dependent partial wave analysis show good consistent with each other
- pseudoscalar and axial vector components are the dominant contributions
- $f_2(1525) \rightarrow K^*(892)^0 K_S^0$ first observed

well describe the			
pseudoscalar			
components			

Resonance	$M({ m MeV}/c^2)$	$\Gamma({ m MeV})$	Decay Mode	B.F.	$\operatorname{Sig.}(\sigma)$
$r(1405) = 1201.7 \pm 0.7 \pm 11$	$1301.7 \pm 0.7 \pm 11.3$	$60.8 \pm 1.2^{+5.5}_{-12.0}$	$J/\psi \to \gamma \eta (1405) \to \gamma K^0_S (K^0_S \pi^0)_{\rm P-wave} \to \gamma K^0_S K^0_S \pi^0$	$(5.84\pm0.12^{+2.03}_{-3.36})\times10^{-5}$	≫ 35
η(1400)	$1391.7 \pm 0.7_{-0.3}$		$J/\psi \to \gamma \eta (1405) \to \gamma (K^0_S K^0_S)_{\text{S-wave}} \pi^0 \to \gamma K^0_S K^0_S \pi^0$	$(2.88\pm 0.04^{+1.64}_{-0.38})\times 10^{-5}$	18.4
$-(1.475)$ 1507 $e + 1.e^{\pm 15.5}$	115 0 + 0 4+14.8	$J/\psi \to \gamma \eta (1475) \to \gamma K^0_S (K^0_S \pi^0)_{\rm P-wave} \to \gamma K^0_S K^0_S \pi^0$	$(6.58\pm 0.12^{+3.98}_{-2.82})\times 10^{-5}$	$\gg 35$	
1(1410)	$1507.0 \pm 1.0_{-32.2}$	$115.8 \pm 2.4 - 10.9$	$J/\psi \to \gamma \eta (1475) \to \gamma (K^0_S K^0_S)_{\text{S-wave}} \pi^0 \to \gamma K^0_S K^0_S \pi^0$	$(3.99\pm0.09^{+0.41}_{-0.66})\times10^{-5}$	$\gg 35$
$f_1(1285)$	$1280.2\pm0.6^{+1.2}_{-1.5}$	$28.2 \pm 1.1 \substack{+5.5 \\ -2.9}$	$J/\psi \rightarrow \gamma f_1(1285) \rightarrow \gamma a_0(980)^0 \pi^0 \rightarrow \gamma K^0_S K^0_S \pi^0$	$(8.55\pm0.41^{+3.42}_{-1.04})\times10^{-6}$	$\gg 35$
$f_{1}(1.420)$	$14225 \pm 11+27.9$	$05.0 \pm 2.2 \pm 13.6$	$J/\psi \rightarrow \gamma f_1(1420) \rightarrow \gamma K^*(892)^0 K^0_S \rightarrow \gamma K^0_S K^0_S \pi^0$	$(7.25 \pm 0.12^{+0.73}_{-1.25}) \times 10^{-5}$	≫ 35
J1(1420)	$1433.5 \pm 1.1 \pm 0.7$	$1433.5 \pm 1.1_{-0.7}$ $95.9 \pm 2.3_{-10.9}$	$J/\psi \to \gamma f_1(1420) \to \gamma a_0(980)^0 \pi^0 \to \gamma K^0_S K^0_S \pi^0$	$(4.62\pm 0.36^{+2.36}_{-1.94})\times 10^{-6}$	17.8
$f_2(1525)$	$1515.4 \pm 2.5^{+3.2}_{-7.6}$	$64.0 \pm 4.3^{+2.0}_{-6.1}$	$J/\psi \rightarrow \gamma f_2(1525) \rightarrow \gamma K^*(892)^0 K_S^0 \rightarrow \gamma K_S^0 K_S^0 \pi^0$	$(9.47 \pm 0.43^{+1.51}_{-0.66}) \times 10^{-6}$	23.8

$f_0(1710) \text{ in } D_S^+ \to K_S^0 K_S^0 \pi^+$

Phys.Rev.D 105 (2022) 5, L051103

- $Br(D_s^+ \rightarrow K_s^0 K_s^0 \pi^+) = (0.68 \pm 0.04_{\text{stat.}} \pm 0.01_{\text{syst.}})\%$, consistent with CLEO result
- $M_{f_0(1710)} = (1.723 \pm 0.011_{\text{stat}} \pm 0.002_{\text{syst}}) \text{ GeV}/c^2$
- $\Gamma_{f_0(1710)} = (0.140 \pm 0.014_{\text{stat}} \pm 0.004_{\text{syst}}) \text{ GeV}/c^2$

- $\frac{Br(f_0(1710) \rightarrow K^+K^-)}{Br(f_0(1710) \rightarrow K_0^0K_0^0)} = 0.32 \pm 0.12$ (implies existence of an isospin one partner of the $f_0(1710)$. Constructive interference for charged kaons and destructive interference for neutral kaons)
- More close to the $K^*\overline{K}^*$ molecule hypethesis of $f_0(1710)$ [Phys.Rev.D 79 (2009) 074009, Phys.Rev.D 104 (2021) 11, 114001]

2.9 σ deviate from CLEO	Amplitude	BF (10 ⁻³)
result (interference2)	$D_s^+ \to K_S^0 K^* (892)^+ \to K_S^0 K_S^0 \pi^+$	$3.0\pm0.3\pm0.1$
	$D_s^+ \to S(1710)\pi^+ \to K_S^0 K_S^0 \pi^+$	$3.1\pm0.3\pm0.1$

$a_0(1817)^+ \text{ in } D_s^+ \to K_s^0 K^+ \pi^0$

Phys.Rev.Lett. 129 (2022) 18, 18

- $Br(D_s^+ \rightarrow K_S^0 K^+ \pi^0) = (1.46 \pm 0.06_{\text{stat.}} \pm 0.06_{\text{syst.}})\%$, consistent with CLEO result
- $a_0(1817)^+$ first observed with significance larger than 10σ
- $M_{a_0(1817)^+} = (1.817 \pm 0.008_{\text{stat}} \pm 0.020_{\text{syst}}) \text{ GeV}/c^2$
- $\Gamma_{a_0(1817)^+} = (0.097 \pm 0.022_{\text{stat}} \pm 0.015_{\text{syst}}) \text{ GeV}/c^2$
- Models:
- isospin-one partner of $f_0(1817)$: BF consistent roughly with prediction [Eur.Phys.J.C 82 (2022) 3, 225] but mass is larger about 100 MeV/ c^2
- isospin-one partner of X(1812) [Phys.Rev.D 105 (2022) 11, 114014]

$$\frac{Br(D_{S}^{+} \to \overline{K}^{*}(892)^{0}K^{+})}{Br(D_{S}^{+} \to \overline{K}^{0}K^{*}(892)^{+})} =$$

$$2.35^{+0.42}_{-0.23 \text{ stat}} \pm 0.10_{\text{syst}}$$

$$\frac{Br(a_{0}(980)^{+} \to \overline{K}^{0}K^{+})}{Br(a_{0}(980)^{+} \to \pi^{+}\eta)} = 13.7$$

+

$$3.6_{\text{stat}} \pm 4.2_{\text{syst}}$$

CPV in hyperon decay

General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. LEE* AND C. N. YANG Institute for Advanced Study, Princeton, New Jersey (Received October 22, 1957)

Phys. Rev. 108, 1645 (1957)

The amplitude of spin $\frac{1}{2}$ baryon B_i decay to a spin $\frac{1}{2}$ baryon B_f and π :

$$\boldsymbol{\mathcal{A}} \sim \boldsymbol{S} \boldsymbol{\sigma}_0 + \boldsymbol{P} \boldsymbol{\sigma} \cdot \boldsymbol{\hat{n}}$$

The decay parameters are defined as:

$$\alpha_Y = \frac{2 \operatorname{Re} \left(S^* P \right)}{|S|^2 + |P|^2}, \quad \beta_Y = \frac{2 \operatorname{Im} \left(S^* P \right)}{|S|^2 + |P|^2}, \quad \gamma_Y = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

Two complex amplitudes:

$$S = \Sigma^{i} S_{i} e^{i(\phi_{i}^{S} + \delta_{i}^{S})}, P = \Sigma^{i} P_{i} e^{i(\phi_{i}^{P} + \delta_{i}^{P})}$$

Under CP transformation:

$$\overline{S} = -\Sigma^{i} S_{i} e^{i(-\phi_{i}^{S} + \delta_{i}^{S})}, \quad \overline{P} = \Sigma^{i} P_{i} e^{i(-\phi_{i}^{P} + \delta_{i}^{P})}$$
If CP conserved: $S \xrightarrow{CP} - S$

$$\alpha \xrightarrow{CP} \overline{\alpha} = -\alpha$$

$$\beta \xrightarrow{CP} \overline{\beta} = -\beta$$

CP observable in hyperon decay

John F. Donoghue Xiao-Gang He Sandip Pakvasa

PHYSICAL REVIEW D

VOLUME 34, NUMBER 3

1 AUGUST 1986

Hyperon decays and CP nonconservation

John F. Donoghue Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

Xiao-Gang He and Sandip Pakvasa Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (Received 7 March 1986)

We study all modes of hyperon nonleptonic decay and consider the CP-odd observables which result. Explicit calculations are provided in the Kobayashi-Maskawa, Weinberg-Higgs, and left-right-symmetric models of CP nonconservation.

PRD 34,833 1986

Not sensitive to *CPV*

Easiest to measure

Polarization of decayed baryon needs to be measured

Decay width difference

Decay parameter difference

Decay parameter difference

 Ξ^- , Ξ^0 , Ω^- cascade

decay

$$\Delta = \frac{\Gamma - \overline{\Gamma}}{\Gamma + \overline{\Gamma}} \approx \sqrt{2} \frac{\Gamma_{\frac{3}{2}}}{T_{\frac{1}{2}}} \sin \Delta_s \sin \phi_{CP}$$
$$A = \frac{\Gamma \alpha + \overline{\Gamma} \overline{\alpha}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \approx \tan \Delta_s \tan \phi_{CP}$$

 T_{2}

$$B = \frac{\Gamma\beta + \Gamma\beta}{\Gamma\beta - \overline{\Gamma}\overline{\beta}} \approx \tan\phi_{CP}$$

SM Prediction of Λ decay

 -5.4×10^{-7}

 $-0.5 imes 10^{-4}$

 3.0×10^{-3}

BESIII: a hyperon factory

10 billion J/ψ events collected:

- Large Br. in J/ψ decay
- Quantum entangled pair productions
- High efficiency, background free

Front. Phys. 12(5), 121301 (2017) Phys. Rev. D 100, 114005 (2019)

			Detection	
Decay mode	$\mathcal{B}(imes 10^{-3})$	$N_B~(\times 10^6)$	Efficiency	Number of reconstructed
$J/\psi ightarrow \Lambda ar{\Lambda}$	1.61 ± 0.15	16.1 ± 1.5	40%	4500 X 10 ³
$J/\psi \to \Sigma^0 \bar{\Sigma}^0$	1.29 ± 0.09	12.9 ± 0.9	25%	600 X 10 ³
$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	1.50 ± 0.24	15.0 ± 2.4	24%	640 X 10 ³
$J/\psi \to \Sigma(1385)^- \bar{\Sigma}^+$ (or c.c.)	0.31 ± 0.05	3.1 ± 0.5		
$J/\psi \to \Sigma(1385)^- \bar{\Sigma}(1385)^+$ (or c.c.)	1.10 ± 0.12	11.0 ± 1.2		
$J/\psi \to \Xi^0 \bar{\Xi}^0$	1.20 ± 0.24	12.0 ± 2.4	14%	670 X 10 ³
$J/\psi \to \Xi^- \bar{\Xi}^+$	0.86 ± 0.11	8.6 ± 1.0	19%	810 X 10 ³
$J/\psi \to \Xi (1530)^0 \bar{\Xi}^0$	0.32 ± 0.14	3.2 ± 1.4		
$J/\psi \to \Xi(1530)^-\bar{\Xi}^+$	0.59 ± 0.15	5.9 ± 1.5		
$\psi(2S) \to \Omega^- \bar{\Omega}^+$	0.05 ± 0.01	0.15 ± 0.03		

 $+ \Omega^{-}(sss) \operatorname{spin}{-}\frac{3}{2}$

arized hyperon pairs produced in e^+e^- collisions

Two form factors are used to describe the production of hyperon pair: G_E , G_M

$$\alpha_{\psi} = \frac{s^2 |G_M|^2 - 4m^2 |G_E|^2}{s^2 |G_M|^2 + 4m^2 |G_E|^2}, \ \frac{G_M}{G_E} = \left|\frac{G_M}{G_E}\right| e^{-i\Delta\Phi}$$

Angular distribution of ^{dΓ}/_{dΩ} ∝ 1 + α_ψ cos² θ, α_ψ ∈ [-1.0, 1.0]
Unpolarized e⁺e⁻ beams ⇒ transverse polarized hyperon (if ΔΦ ≠ 0):

 $e^+e^-
ightarrow J/\psi
ightarrow \Lambda\overline{\Lambda}, \Lambda(\overline{\Lambda})
ightarrow p\pi$

• Joint amplitude:

$$M = \frac{ie^2}{q^2} j_{\mu} \overline{u}(p_1) \left(F_1 \gamma_{\mu} + \frac{F_2}{2m} p_{\nu} \sigma^{\nu \mu} \gamma_5 \right) v(p_2)$$

 $\frac{d\sigma}{d\tau} - 1 + \alpha_{\psi}\cos^{2}\theta_{\Lambda} + \left(\alpha_{\psi} + \cos^{2}\theta_{\Lambda}\right)s_{\Lambda}^{z}s_{\overline{\Lambda}}^{z} + \sin^{2}\theta_{\Lambda}s_{\Lambda}^{x}s_{\overline{\Lambda}}^{x} - \alpha_{\psi}\sin^{2}\theta_{\Lambda}s_{\Lambda}^{y}s_{\overline{\Lambda}}^{y} + \sqrt{1 - \alpha_{\psi}^{2}}\cos\Delta\Phi\sin\theta_{\Lambda}\cos\theta_{\Lambda}\left(s_{\Lambda}^{x}s_{\overline{\Lambda}}^{z} + s_{\overline{\Lambda}}^{y}\right)$ $\frac{s_{\Lambda}^{z}s_{\overline{\Lambda}}^{x}}{s_{\Lambda}^{z}} + \sqrt{1 - \alpha_{\psi}^{2}}\sin\Delta\Phi\sin\theta_{\Lambda}\cos\theta_{\Lambda}\left(s_{\Lambda}^{y} + s_{\overline{\Lambda}}^{y}\right)$ $\frac{POLARIZATIONS}{s_{\Lambda}^{z}s_{\overline{\Lambda}}^{z}} + \frac{SPIN CORRELATIONS}{s_{\Lambda}^{z}s_{\Lambda}^{z}} + \frac{SPIN CORRELATIONS}{s_{\Lambda}^{z}s_{\Lambda}^{z}}$

- The spin vector of Λ is denoted by s_{Λ}
- Only $\langle s^{y} \rangle$ could be non-zero, if $\sin \Delta \Phi \neq 0$

Nuovo Cim. A 109, 241 (1996) Phys. Rev.185 D 75, 074026 (2007) Nucl. Phys. A190 771, 169 (2006) Phys. Lett. B 772, 16(2017)

50 cm

$e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}, \Lambda(\overline{\Lambda}) \rightarrow p\pi$

BESIII has publish 2 works based on 1.3 billion and 10 billion J/ψ data sample:

[1] 1.3 billion: Nature Phys.15(2019)631

[2] 10 billion: Phys.Rev.Lett. 129 (2022) 13, 131801

- Most precise values for Λ decay parameter
- One of the most precise *CP* test in the hyperon sector: $A_{CP} = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}} = -0.0025 \pm 0.0046 \pm 0.0011$

Standard mode prediction : $A_{CP} \sim 10^{-4}$ (PRD 34, 833 (1986))

Par.	This work	Previous results [12]
$\overline{lpha_{J/\psi}}$	$0.4748 \pm 0.0022 \pm 0.0031$	$0.461 \pm 0.006 \pm 0.007$
$\Delta \Phi$	$0.7521 \pm 0.0042 \pm 0.0066$	$0.740 \pm 0.010 \pm 0.009$
lpha	$0.7519 \pm 0.0036 \pm 0.0024$	$0.750 \pm 0.009 \pm 0.004$
$lpha_+$	$-0.7559 \pm 0.0036 \pm 0.0030$	$-0.758 \pm 0.010 \pm 0.007$
A_{CP}	$-0.0025 \pm 0.0046 \pm 0.0012$	$0.006 \pm 0.012 \pm 0.007$
$lpha_{ m avg}$	$0.7542 \pm 0.0010 \pm 0.0024$	-

$J/\psi \to Z^-\overline{Z}^+, Z^- \to \Lambda(\to p\pi^-)\pi^- + c.c.$

• For the sequential weak decays, the formula of sequential decays is:

$$\mathcal{W}(\boldsymbol{\xi}, \boldsymbol{\omega}) = \sum_{\mu, \bar{\nu} = 0}^{3} \underbrace{C_{\mu\bar{\nu}}}_{\mu', \bar{\nu}' = 0} \sum_{\mu', \bar{\nu}' = 0}^{3} \underbrace{a^{B_1}_{\mu\mu'} a^{\bar{B}_1}_{\bar{\nu}\bar{\nu}'} a^{B_2}_{\mu'0} a^{\bar{B}_2}_{\bar{\nu}'0}}_{2}$$

PRD99(2019)056008 PRD100(2019)114005

- Angular distribution $d\Gamma \propto W(\xi, \omega)$
 - ξ : 9 kinematic variables, denoted by 9 helicity angles
 - $\omega = (\alpha_{\psi}, \Delta \Phi, \alpha_{\Xi}, \alpha_{\overline{\Xi}}, \phi_{\Xi}, \phi_{\Xi}, \alpha_{\Lambda}, \alpha_{\overline{\Lambda}}): 8 \text{ free parameters}$

More parameters in sequential decay!

- Data sample: 1.3 billion J/ψ events.
- Final dataset: $73.2 \cdot 10^3$ events with 199 backgrounds.

$J/\psi \rightarrow E^-\overline{E}^+, E^- \rightarrow \Lambda(\rightarrow p\pi^-)\pi^- + c.c.$

Nature 606 (2022) 7912, 64-69

	Parameter	This work	Previous result	
	a _w	0.586±0.012±0.010	0.58±0.04±0.08	
	ΔΦ	1.213±0.046±0.016 rad	-	First measurement of the Ξ^-
First direct and	a ₌	-0.376±0.007±0.003	-0.401±0.010	
simultaneously measurement	ϕ_{Ξ}	0.011±0.019±0.009rad	-0.037±0.014 rad	
of the charged E decay	ā _z	0.371±0.007±0.002	-	
parameters	$ar{oldsymbol{\phi}}_{\Xi}$	-0.021±0.019±0.007rad	-	
	a _A	0.757±0.011±0.008	0.750±0.009±0.004	HyperCP: $\phi_{\Xi'HyperCP} = -0.042 \pm 0.011 \pm 0.011$
	\overline{a}_{Λ}	-0.763±0.011±0.007	-0.758±0.010±0.007	BESIII: $\langle \phi_{\Xi} \rangle = 0.016 \pm 0.014 \pm 0.007$
First measurement of weak	$\xi_{P} - \xi_{S}$	(1.2±3.4±0.8)×10 ⁻² rad	-	We obtain the same precision for
phase difference in E decay	$\delta_{P} - \delta_{S}$	(-4.0±3.3±1.7)×10 ⁻² rad	(10.2±3.9)×10⁻²rad	of magnitude smaller data sample!
	A ^Ξ _{CP}	(6±13±6)×10 ⁻³	-	
Three independent <i>CP</i> tests	$\Delta \phi_{\rm CP}^{\Xi}$	(-5±14±3)×10 ⁻³ rad	-	HyperCP: PRL 93(2004) 011802
	A ^Λ _{CP}	(-4±12±9)×10 ⁻³	(-6±12±7)×10 ⁻³	
A second	$\langle \phi_{\underline{z}} \rangle$	0.016±0.014±0.007rad		

0.2_F

0.15

0.05

-0.05

_0.1Ē

-5-1

-0.1

-0.2

-0.3

-0.15

 $\mu(\cos\theta_{\Lambda})$

×

0.1E

Summary of BESIII achievement

	PRL 129, 131801(2022)	PRL 125,052004(2020)	Nature 606,64(2022)	arXiv:2305.09218v1
Parameters	$\Lambda\overline{\Lambda}$	$\Sigma^+ \overline{\Sigma}^-$	Ξ- <u>Ξ</u> +	$\Xi^0\overline{\Xi}^0$
$lpha_{\Xi^{-}/\Xi^{0}}$	-	-	$-0.376 \pm 0.007 \pm 0.003$	$-0.3750 \pm 0.0034 \pm 0.0016$
$lpha_{\Xi^+/\Xi^0}$	-	-	$0.371 \pm 0.007 \pm 0.002$	$0.3790 \pm 0.0034 \pm 0.0021$
ϕ_{Ξ^-/Ξ^0}	-	-	$0.011 \pm 0.019 \pm 0.009$	$0.0051 \pm 0.0096 \pm 0.0018$
$\phi_{\overline{\Xi}^+/\overline{\Xi}^0}$	-	-	$-0.021 \pm 0.019 \pm 0.007$	$-0.0053 \pm 0.0097 \pm 0.0019$
$A_{CP}(\Xi^-/\Xi^0)$	-	-	0.006 ± 0.013 ± 0.006	$-0.0054 \pm 0.0065 \pm 0.0031$
$\Delta\phi_{CP}(\Xi^-/\Xi^0)$	-	-	$-0.005 \pm 0.014 \pm 0.003$	$-0.0001 \pm 0.0069 \pm 0.0009$
$lpha_{\Lambda/\Sigma^+}$	0.7519 ± 0.0036 ± 0.0024	$-0.998 \pm 0.037 \pm 0.009$	0.757 ± 0.011 ± 0.008	0.7551 ± 0.0052 ± 0.0023
$lpha_{\overline{\Lambda}/\overline{\Sigma}^{-}}$	$-0.7559 \pm 0.0036 \pm 0.0030$	0.990 ± 0.037 ± 0.011	$-0.763 \pm 0.011 \pm 0.007$	$-0.7448 \pm 0.0052 \pm 0.0023$
$A_{CP}(\Lambda/\Sigma^+)$	$-0.0025 \pm 0.0046 \pm 0.0012$	$-0.004 \pm 0.037 \pm 0.010$	$-0.004 \pm 0.012 \pm 0.009$	$0.0069 \pm 0.0058 \pm 0.0018$

The most precise *CP* measurement at BESIII: $A_{CP}^{\Lambda} = -0.0025 \pm 0.0046 \pm 0.0012$ Systematic uncertainties are well controlled!

- Excellent performance of BESIII detectors.
- Data-driven method to study data-MC inconsistency.

el method to study hyperon-nucleon interaction

arXiv:2304.13921(Accepted by PRL)

 $\Xi^0 n \to \Xi^- p$ is observed for the first time

For Ξ^0 momentum is 0.818 GeV/c

The first study of hyperon–nucleon interaction in electron–positron collisions! More results are on the way.

First study of $D_s^{*+} \rightarrow e^+ \nu_e$

arxiv: 2304.12159

- $D_s^{*+} \rightarrow e^+ \nu_e$ first measured
- $Br(D_s^{*+} \to e^+ \nu_e) = (2.1^{+1.2}_{-0.9 \text{ stat}} \pm 0.2_{\text{syst}}) \times 10^{-5}$
- $f_{D_s^{*+}}|V_{cs}| = (207.9^{+59.4}_{-44.6 \text{ stat}} \pm 42.7_{\text{syst}}) \text{ MeV}$
- $f_{D_s^{*+}} = (213.6^{+61.0}_{-45.8 \text{ stat}} \pm 43.9_{\text{syst}}) \text{ MeV}$ (taking $|V_{cs}|$ extracted by the global fit in the SM)

$f_0(980) \text{ in } D_s^+ \to \pi^+\pi^- e^+ \nu_e$

arxiv: 2303.12927

55

- $Br(D_s^+ \to f_0(980)e^+e^-) \times Br(f_0(980) \to \pi^+\pi^-) = (1.72 \pm 0.13_{\text{stat}} \pm 0.10_{\text{syst}}) \times 10^{-3}$
- Taking $f_0(980)$ as $sin\phi \frac{1}{\sqrt{2}}(u\overline{u} + d\overline{d}) + cos\phi s\overline{s}$ [EPL 90 (2010) 6, 61001Phys.Rev.D 80 (2009) 074030], $s\overline{s}$ is found to be dominant. Disagree with calculation [Phys.Rev.D 80 (2009) 074030] based on CLEO result [Phys.Rev.D 80 (2009) 052007]
- $f_{+}^{f_0}(0)|V_{cs}| = 0.504 \pm 0.017_{\text{stat}} \pm 0.035_{\text{syst}}$
- $f_{+}^{f_{0}}(0) = 0.518 \pm 0.018_{\text{stat}} \pm 0.036_{\text{syst}}$ (taking $|V_{cs}| = 0.97349 \pm 0.00016$)

large uncertainty due to the ϕ

	This work	CLFD [6]	DR [6]	QCDSR [7]	QCDSR [8]	LCSR [9]	LFQM [11]	CCQM [12]
$f_{+}^{f_{0}}(0)$	$0.518 \pm 0.018_{\rm stat} \pm 0.036_{\rm syst}$	0.45	0.46	0.50 ± 0.13	0.48 ± 0.23	0.30 ± 0.03	0.24 ± 0.05	0.39 ± 0.02
Difference (σ)				0.1	0.2	4.3	4.3	2.8
ϕ in theory		$(32 \pm 4.8)^{\circ}$	$(41.3 \pm 5.5)^{\circ}$	35°	$(8^{+21}_{-8})^{\circ}$		$(56 \pm 7)^{\circ}$	31°

Further improvement on $D_s^+ ightarrow au^+ u_{ au}$

 $D_s^+
ightarrow au^+
u_{ au}, au^+
ightarrow \mu^+
u_{\mu} \overline{
u}_{ au}$ arXiv:2303.12468

 7.33 fb^{-1} data from 4.128 GeV to 4.226 GeV

Further improvement on $D_s^+ o au^+ u_ au$

$\begin{array}{cccc} 0 & 100 & 200 & 300 \\ & f_{D^+}(\text{MeV}) & \end{array}$				
		1 1 1 1		
BESHI	τν	μ	252.1+1.7+2.0	Combined
BESIII 7.33 fb ⁻¹	this work τ	V	252.7+3.8+2.6	H
BESHI 6.32 fb	arXiv:2303	12600 [hep-ex]. TV	251.1±2.4±3.0 254 3+4 0+3 3	Nett.
BESIII 6.32 fb ⁻¹	PRD104(20)	$\tau_{\rm p}^{1}$	251.6±5.9±4.9	H- H
BESIII 6.32 fb ⁻¹	PRD104(20)	21)052009, $\tau_{\pi} v$	249.7±6.0±4.2	₩- <mark></mark> ₩
51511 0.52 10	(2.0.020102010	
BESHI 5.19 ID BESHI 6 32 fb ⁻¹	PRD104(20)	21)052009, µv	249.8+3.0+3.9	Hell
RESILI 2 10 ft1	PRL122(20)	19)071802. IIV	240.0±0.0±4.0 253 0+3 7+3 6	
BaBar	FKD52(201)	13)130 UV	204.9±8.4±7.6	⊢⊢⊷∺
CLEO	PKD79(200)	9)052001, μν	256.7±10.2±4.0	H <mark>a</mark> rd
BESIII 0.482 fb ⁻¹	PRD94(2010	6)072004, μν	245.5±17.8±5.1 ►	
Belle	JHEP09(20)	13)139, $\tau_{e,\mu,\pi}v$	261.1±4.8±7.2	<mark>H</mark> +H
BaBar	PRD82(201	0)091103, $\tau_{e,\mu}^{}v$	244.6±8.6±12.0	<mark>-i e i</mark> i
CLEO	PRD79(200	9)052001, τ _π ν	277.1±17.5±4.0	
CLEO	PRD80(200	$(9)112004, \tau_v$	257.0+13.3+5.0	
HFLAV21 CLEO	arAiv:2206. PRD79(200	9)052002. τ V	252.2±2.5 251 8+11 2+5 3	
FLAG21(2+1+1)	arAiv:2111.	07501 [hop_ox]	249.9±0.5	
FMILC $(2+1+1)$	PRD98(201)	8)074512 00840 [bop lot]	249.9±0.4	1
ETM(2+1+1)	PRD91(201	5)054507	247.2±4.1	in i l
	B	$(\mathbf{D}_{\mathbf{s}}^{+} \rightarrow \tau^{+} \mathbf{v})$	(%)	
	-5	0		5
BESHI	τν		5.32±0.07±0.07	■ Combined
BESIII 7.33 fb ⁻¹	this work $\tau_{\mu}v$		5.34±0.16±0.10	H
BESIII 7.33 fb ⁻¹	arXiv:2303.12	600 [hep-ex], $\tau_{\pi} v$	5.41±0.17±0.13	H
BESIII 6.32 fb ⁻¹	PRL127(2021)	171801, $\tau_e v$	5.27±0.10±0.12	Hell
BESIII 6.32 fb ⁻¹	PRD104(2021)	032001 , $\tau_{\rho}v$	5.29±0.25±0.23	H-e-H
BESIII 6.32 fb ⁻¹	PRD104(2021)	052009, τ _π ν	5.21±0.25±0.17	⊫⊷⊣
Dene	JIIII 07(2010)	, τος, τ _{e,μ,π} τ	5.70±0.21±0.51	
Bollo	IHEP09(2013)	139. τ ν	5 70+0 21+0 31	
RoBor	PRD82(2010)0	$91103. \tau v$	1 06+0 37+0 57 L	
CLEO	PRD79(2009)0	52001. τν	6 47+0 80+0 22	
CLEO	PRD80(2009)1	12004. Toy	5.50+0.54+0.24	
CLEO	PRD79(2009)0	52002, τ _e ν	5.32±0.47±0.22	
C 3 315 1		16 11	1 1 1	

CKMFitter HFLAV21	PTEP2022(2022)083 arXiv:2206.07501 [he	C01 0.97349±0.00 [p-ex] 0.9701±0.008	016 1
CLEO CLEO CLEO	PRD79(2009)052002, PRD80(2009)112004, PRD79(2009)052001,	$\begin{array}{ccc} \tau_e v & 0.981 \pm 0.044 \pm \\ \tau_\rho v & 1.001 \pm 0.052 \pm \\ \tau_{\pi} v & 1.079 \pm 0.068 \pm \end{array}$	0.021 F+1 0.019 F+1 0.016 F+4
BaBar Belle	PRD82(2010)091103, JHEP09(2013)139, τ	$\tau_{e,\mu}^{\nu}$ 0.953±0.033± $t_{e,\mu,\pi}^{\nu}$ 1.017±0.019±	:0.047 H <mark>+H</mark> :0.028 H+H
BESIII 0.482 fb ⁻¹ CLEO	PRD94(2016)072004, PRD79(2009)052001,	μν 0.956±0.069± μν 1.000±0.040±	:0.020 ++++ :0.016 +++
BaBar Belle	PRD82(2010)091103, JHEP09(2013)139, µ PPL 122(2010)07180	$\begin{array}{c} \mu\nu & 1.032\pm0.033\pm\\ \nu & 0.969\pm0.026\pm\\ 0.085\pm0.014\pm\\ \end{array}$:0.029 Hell :0.019 Hell
BESIII 3.19 fb ⁻¹ BESIII 6.32 fb ⁻¹	PRD104(2021)052009	$0.985\pm0.014\pm0.012\pm0.002\pm00000000$	0.014 H
BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹	PRD104(2021)05200 PRD104(2021)03200	$\begin{array}{llllllllllllllllllllllllllllllllllll$:0.016 i <mark>e</mark> l :0.019 iel
BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹	PRL127(2021)17180 arXiv:2303.12600 [he	p-ex], τ_{e}^{V} 0.978±0.009± 0.991±0.015±	0.012 H 0.013 H
BESIII 7.33 fb ⁻¹ BESIII	this work $\tau_{\mu}v$ τv	0.984±0.015± 0.982±0.007±	:0.010 • Combined
	-1	0	1
			
FNAL/MILC	PRD98,074512	212.7±0.6	<mark>0</mark>
RBC/UKQCD	JHEP1712,008	208.7±2.8 ^{+2.1}	
ЕТМ	PRD91,054507	207.4±3.8	
FNAL/MILC	PRD90,074509	212.6±0.4 ^{+1.0}	•
HPQCD	PRD86,054510	208.3±3.4	
FNAL/MILC	PRD85,114506	218.9±11.3	<u>_</u>
CLEO	PRD78,052003 , μν, τ _{πν} ν	206.8±8.7±2.5	
BESIII	PRD89,051104 , μν	203.8±5.2±1.8	
	E-marked (0000-1)	202 9+2 0+1 5	S42.07
BESIII	Expected (2010), µv		••••••••••••••••••••••••••••••••••••••

CKM matrix at BESIII

Fermilab Lattice and MILC, arXiv:2212.12648

$$\begin{split} |V_{cd}|^{D \to \pi \ell^+ \nu} &= 0.2238(11)^{\text{Expt}}(15)^{\text{QCD}}(04)^{\text{EW}}(02)^{\text{SIB}}[22]^{\text{QED}}, \\ |V_{cd}|^{D_s \to K e^+ \nu} &= 0.258(15)^{\text{Expt}}(01)^{\text{QCD}}[03]^{\text{QED}}, \\ |V_{cs}|^{D \to K \ell^+ \nu} &= 0.9589(23)^{\text{Expt}}(40)^{\text{QCD}}(15)^{\text{EW}}(05)^{\text{SIB}}[95]^{\text{QED}}, \end{split}$$

Form factors $f_+^{D \rightarrow h}$

Fermilab	Lattice and	I MILC,	arXiv:221	2.12648
----------	-------------	---------	-----------	---------

process	collaboration	$f_0(0)$
$D \to \pi$	FNAL/MILC	0.6300(51)
$D \to \pi$	ETMC 17	0.612(35)
$D \to K$	FNAL/MILC	0.7452(31)
$D \to K$	HPQCD 22	0.7441(40)
$D \to K$	HPQCD 21	0.7380(40)
$D \to K$	ETMC 17	0.765(31)
$D_s \to K$	FNAL/MILC	0.6307(20)

Λ_c semi-leptonic decay

PRL129, 231803 (2022)

PRD106, 112010 (2022)

60

Determination of form factors of $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

First direct comparisons on the differential decay rates and form factors with LQCD calculations

Observation of $\Lambda_c^+ \rightarrow p K^- e^+ \nu$

 $B(\Lambda_{c}^{+} \rightarrow pK^{-}e^{+}\nu_{e}) = (0.88 \pm 0.17 \pm 0.07)\%$ $B(\Lambda_{c}^{+} \rightarrow \Lambda(1405)e^{+}\nu_{e}) = (1.87 \pm 0.84 \pm 0.18)\%$ $B(\Lambda_{c}^{+} \rightarrow \Lambda(1520)e^{+}\nu_{e}) = (1.02 \pm 0.52 \pm 0.11)\%$

- Second leptonic decay of Λ_c^+ is observed!
- Good channel to study Λ excited states, such as Λ(1405) and Λ(1520)

BEPCII-Upgrade

 ✓ An upgrade of BEPCII (BEPCII-U) has been approved in July 2021: the optimized energy is 2.35 GeV with luminosity 3 times higher than current BEPCII and extend the maximum energy to 5.6 GeV

	BEPCII	BEPCII-U
Lum [10 ³² cm ⁻² s ⁻¹]	3.5	11
eta_y^* [cm]	1.5	1.35
Bunch Current [mA]	7.1	7.5
Bunch Num	56	120
SR Power [kW]	110	250
$\xi_{y,\text{lum}}$	0.029	0.033
Emittance [nmrad]	147	152
Coupling [%]	0.53	0.35
Bucket Height	0.0069	0.011
$\sigma_{z,0}$ [cm]	1.54	1.07
σ_{z} [cm]	1.69	1.22
RF Voltage [MV]	1.6	3.3

- ✓ Detailed studies of the known
 Z_{c(s)} states and search for `black
 swans` in the higher energy region
 within a considerable amount of
 data sets.
- ✓ Extend precise R values to higher regions
- ✓ Cover all the ground-state charmed baryons: production & decays, CPV search

Super Tau Charm Facility (STCF) in China

- Peak luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Energy range E_{cm} = 2-7 GeV
- Potential to increase luminosity & realize beam polarization
- Total cost: 4.5B RMB

- 1 ab⁻¹ data expected per year
- Rich physics program, unique for physics with c quark and τ leptons
- Important playground for study of QCD, exotic hadrons, flavor and search for new physics.63

STCF detector

[≻] ITK:

• Material< $0.01X_0$, $\sigma_{xy} < 100 \,\mu m$

➤ MDC:

- Material < $0.05X_0$, $\sigma_{xy} < 130 \,\mu m$
- $\sigma(p)/p < 0.5\%@1 \, \text{GeV}/c$
- $\sigma_{dE/dx} < 6\%$
- ➢ PID:
 - $3\sigma \pi/K$ seperation
 - PID efficiency>97% up to 2 GeV
- ➤ EMC:
 - $\sigma_E < 2.5\%$, $\sigma_{pos} \sim 4$ mm, $\sigma_t \sim 300$ ps @ 1 GeV
- > MUD:
 - μ efficiency > 95% above 0.7 GeV with $\pi \rightarrow \mu$ misidentification rate < 3%

QCD and hadron spectroscopy

Physics at STCF	Benchmark Processes	Key Parameters		
		BESIII	STCF	
XYZ properties	$e^+e^- \rightarrow Y \rightarrow \gamma X, \eta X, \phi X$ $e^+e^- \rightarrow Y \rightarrow \pi Z_c, KZ_{cs}$	$\frac{N_{Y(4260)/Z_c/X(3872)}}{\sim 10^6/10^6/10^4}$	$\frac{N_{Y(4260)/Z_c/X(3872)}}{\sim 10^{10}/10^9/10^6}$	
Pentaquarks Di-charmonium	$\begin{array}{l} e^+e^- \to J/\psi p\bar{p}, \Lambda_c \overline{D}\bar{p}, \Sigma_c \overline{D}\bar{p} \\ e^+e^- \to J/\psi \eta_c, J/\psi h_c \end{array}$	N/A	$\sigma(e^+e^- \rightarrow J/\psi p \overline{p}) \sim 4 \text{ fb}$ $\sigma(e^+e^- \rightarrow J/\psi c \overline{c}) \sim 10 \text{ fb}$ (prediction)	
Hadron Spectroscopy	Excited $c\bar{c}$ and their transition, Charmed hadron spectroscopy, Light hadron spectroscopy	$\frac{N_{J/\psi/\psi(3686)/\Lambda_c}}{\sim 10^{10}/10^9/10^6}$	$\frac{N_{J/\psi/\psi(3686)/\Lambda_c}}{\sim 10^{12}/10^{11}/10^8}$	
Hadron production (<2GeV) (Muon g-2)	$e^+e^- \rightarrow \pi^+\pi^-, \pi^+\pi^-\pi^0, K^+K^-$ $\gamma\gamma \rightarrow \pi^0, \eta^{(\prime)}, \pi^+\pi^-$	$\Delta a_{\mu}^{HVP}{\sim}30\times10^{-11}$	$\Delta a_{\mu}^{HVP} < 10 \times 10^{-11}$	
R value τ mass	$e^+e^- \rightarrow inclusive$ $e^+e^- \rightarrow \tau^+\tau^-$	$\frac{\delta R{\sim}3\%}{\Delta m_{\tau}{\sim}0.12~MeV}$	$\frac{\delta R{\sim}1\%}{\Delta m_{\tau}{\sim}0.012~MeV(1~month~scan)}$	
Fragmentation functions	$e^+e^- \rightarrow (\pi, K, p, \Lambda, D) + X$ $e^+e^- \rightarrow (\pi\pi, KK, \pi K) + X$	$\Delta A^{Collins} \sim 0.02$	$\Delta A^{Collins} < 0.002$	
Nucleon FFs	$e^+e^- \rightarrow B\overline{B}$ from threshold	$\delta R_{EM} \sim 3\% - 20\%$	$\delta R_{EM} \sim 1\% - 3\%$	

Flavour physics and CPV

Physics at STCF	Benchmark Processes	Key Parameters	
		BESIII	STCF
CKM matrix	$D^+_{(s)} \rightarrow l^+ v_l, D \rightarrow P l^+ v_l$	$\frac{\delta V_{cd/cs} \sim 1.5\%}{\delta f_{D/D_s} \sim 1.5\%}$	$\frac{\delta V_{cd/cs} \sim 0.15\%}{\delta f_{D/D_s} \sim 0.15\%}$
γ/ϕ_3 measurement	$D^0 \rightarrow K_s \pi^+ \pi^-, K_s K^+ K^- \dots$	$\Delta(\cos \delta_{K\pi}) \sim 0.05 \ \Delta(\delta_{K\pi}) \sim 10^{\circ}$	$\Delta(\cos \delta_{K\pi}) \sim 0.007 \ \Delta(\delta_{K\pi}) \sim 2^{\circ}$
$D^0 - \overline{D}^0$ mixing	$\psi(3770) \rightarrow (D^0 \overline{D}{}^0)_{CP=-},$ $\psi(4140) \rightarrow \gamma (D^0 \overline{D}{}^0)_{CP=+}$	Δx~0.2% Δy~0.2%	Δx~0.035% Δy~0.023%
Charm hadron decay	$D_{(s)}, \Lambda_c^+, \Sigma_c, \Xi_c, \Omega_c$ decay	$N_{D/D_s/A_c} \sim 10^7 / 10^7 / 10^6$	$N_{D/D_s/A_c} \sim 10^9 / 10^8 / 10^8$
y polarizatio n	$D^0 \to K_1 e^+ v_e$	<i>∆A′_{UD}</i> ~0.2 ??	<i>∆A′_{UD}</i> ~0.015
CPV in Hyperons	$J/\psi ightarrow \Lambda \overline{\Lambda}, \Sigma \overline{\Sigma, \Xi^- \overline{\Xi}^-}, \Xi^0 \overline{\Xi}{}^0$	$\Delta A_A \sim 10^{-3}$	$\Delta A_A \sim 10^{-4}$
CPV in T	$ au ightarrow K_s \pi u$, EDM of $ au$ $ au ightarrow \pi/K \pi^0 u$ for polarized e^-	N/A	$\Delta A_{\tau \to K_s \pi \nu} \sim 10^{-3}$ $\Delta d_{\tau} \sim 5 \times 10^{-19} \text{ (e cm)}$
CPV in Charm	$D^0 ightarrow K^+ K^- / \pi^+ \pi^-,$ $\Lambda_c ightarrow p K^- \pi^+ \pi^0 \dots$	$\frac{\Delta A_D \sim 10^{-2}}{\Delta A_{A_c} \sim 10^{-2}}$	$\frac{\Delta A_D \sim 10^{-3}}{\Delta A_{A_c} \sim 10^{-3}}$
CPV. CPT in $K^0 - \overline{K}^0$ m	ixing $I/\psi \to K^0 K^- \pi^+$		$\eta_+ \sim 10^{-3}, \Delta \phi_+ \sim 0.05^{\circ}$

Exotic decays and BSM

Physics at STCF	Benchmark Processes	BESIII (U.L. at 90% C.L.)	STCF (U.L. at 90% C.L.)
LFV decays	$\begin{split} \tau &\to \gamma l, lll, lP_1P_2\\ J/\psi &\to ll', D^0 \to ll'(l' \neq l) \dots \end{split}$	N/A $\mathcal{B}(J/\psi \rightarrow e\tau) < 1 \times 10^{-8}$	$\mathcal{B}(\tau \to \gamma \mu / \mu \mu \mu) < 12/1.5 \times 10^{-9}$ $\mathcal{B}(J/\psi \to e\tau) < 0.71 \times 10^{-9}$
LNV, BNV	$\begin{split} D^+_{(s)} &\to l^+ l^+ X^-, J/\psi \to \Lambda_c e^-, \\ B &\to \bar{B} :: \end{split}$	$\mathcal{B}(J/\psi\to\Lambda_c e^-)<10^{-8}$	$\mathcal{B}(J/\psi\to\Lambda_c e^-)<10^{-11}$
Charge Symmetry Violation	$\eta' \rightarrow l l \pi^0, \eta' \rightarrow \eta l l \dots$	$ \mathcal{B}(\eta' \to ll/\pi^0 ll) < 1 \times 10^{-6} $	$\mathcal{B}(\eta' \to ll/\pi^0 ll) < 1.5/2.4 \times 10^{-9}$
FCNC	$\begin{split} D &\to \gamma V, D^0 \to l^+ l^-, e^+ e^- \to \\ D^*, \Sigma^+ \to p l^+ l^- \dots \end{split}$	$\mathcal{B}(D^0 \rightarrow e^+ e^- X) < 10^{-6}$	$\mathcal{B}(D^0 \rightarrow e^+ e^- X) < 10^{-8}$
Dark photon millicharged	$e^+e^- \rightarrow (J/\psi) \rightarrow \gamma A'(\rightarrow l^+l^-)$ $e^+e^- \rightarrow \chi \bar{\chi} \gamma$	Mixing strength $\Delta \epsilon_{A'} \sim 10^{-2}$; $\Delta \epsilon_{\chi} \sim 10^{-2}$	Mixing strength $\Delta \epsilon_{A'} \sim 10^{-4}$; $\Delta \epsilon_{\chi} \sim 10^{-4}$

Summary

- > Abundant physics results has been presented during the 15 years (more than 500 papers now)
- Cover a large scope of physics topics:
 - The decay of charmonium states has been studied thoroughly and in detail
 - 26 new states has been discovered at BESIII, including charomiun(-like) states (X, Y, Z_c, Z_{cs}), light hadrons and higher excited baryons
 - Precision measurements of hyperon decay parameters, polarization and *CP* asymmetry
 - Hyperon-nucleus interaction
 - Precise measurement of the CKM matrix elements $|V_{cs}|/|V_{cd}|$, the form factor of *D* meson and Λ_c baryon
- ➤ Future goals:
 - BEPCII-Upgrade
 - STCF

THANKS

Han Miao

Institute of High Energy Physics

University of Chinese Academy of Sciences

Milan, Italy

2023.6.21