Joint Variational Auto-Encoder for Anomaly Detection in HEP

Lorenzo Valente ^{1*}, Luca Anzalone ^{1,2}, Marco Lorusso ^{1,2}, Daniele Bonacorsi ^{1,2}

¹ University of Bologna ² INFN Bologna ^{*}Speaker

IVERSITA DI BOLOGNA

17 July, 2023

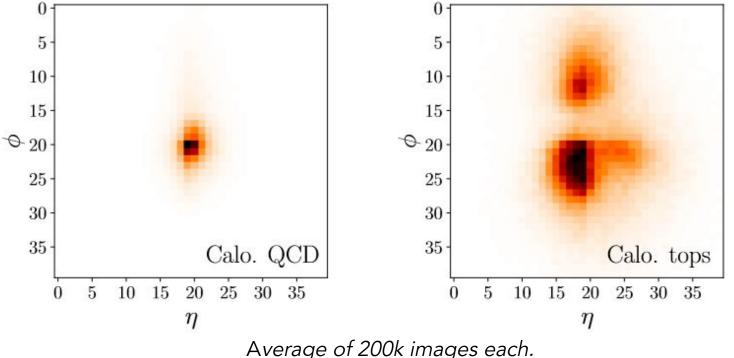
Introduction

Problem & Data Anomaly Detection Auto-Encoders

Problem: Classification of QCD Jets

The problem is framed as **anomaly detection**: no assumption of signal form!

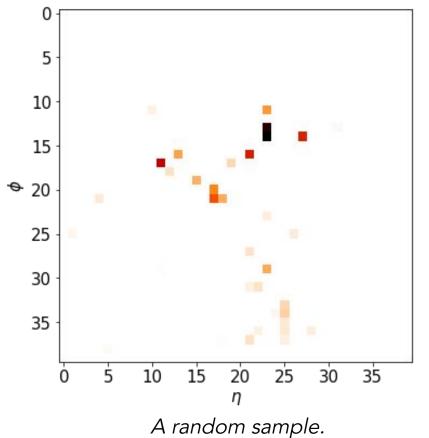
- Knowledge about the QCD background is only necessary.
- The model learns the QCD features, instead of adapting to the signal (as a classifier would do.)
- Must define an AD score.
- The signal samples are only used for evaluating the final performance.
- ⇒ The AD model is **signal agnostic**!



Dataset: QCD vs Top Jets

Data from the **Top-tagging challenge**: 200k QCD and 200k Top jets.

- Simulated jets with Pythia8 at 14TeV.
- Selection: jets with $p_T \in [550,650]$ GeV and $|\eta| < 2$.
- Pre-processing: each jet has at most 200 4-vectors; these are centered, rotated, and flipped in both axes. Then pixelization occurs with a slight crop, yielding 40 × 40 images. Finally, the pixels are normalized to sum to one.
- Pixel size is $[\Delta \eta, \Delta \varphi] = [0.029, 0.035].$
- Train-test split: 75/25 for QCD, 0/100 Tops.

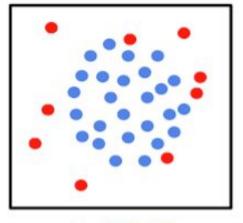


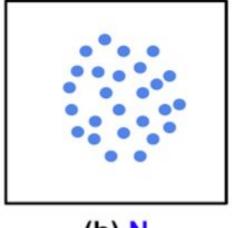
Task: Anomaly Detection

Is about distinguishing anomalies (e.g. Top jets) from normal data (e.g. QCD Jets):

- Idea: normal samples have either low error or high-likelihood.
- Anomalies can be either *erroneous*, *rare*, or *interesting* events.
- Can be solved either by: estimating data density, thresholding distances or errors, clustering, or classification.
- Our approach is *self-supervised* and assumes a normal-only (N) set of samples: QCD jets.

Negative (N) labeled sample,
 Positive (P) labeled sample





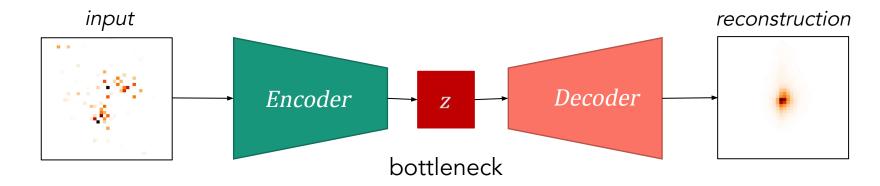
(a) P+N

(b) <mark>N</mark>

Method: Auto-Encoders

Auto-Encoders (AEs) are a neural network model trained to reconstruct its inputs:

- The **encoder** has to *compress* the input into a meaningful **latent space** Z (bottleneck)
- The **decoder** reconstructs from the compressed representation.



- AEs and variants are suitable for anomaly detection, since the training doesn't require labels!
- In context of AD, the AE have to capture the background peculiarities.

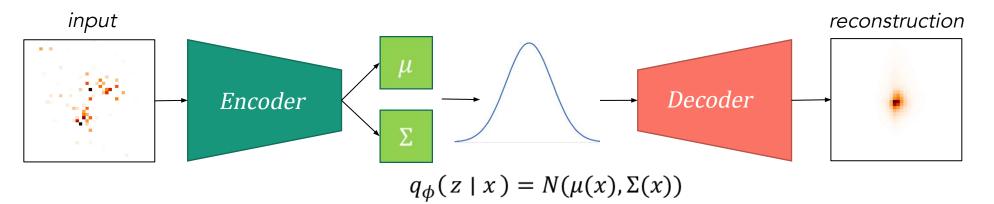
Joint-VAE for Anomaly Detectio

Variational AE Discrete VAE Joint-VAE

Variational Auto-Encoders

Variational Auto-Encoders (VAEs) are *probabilistic* models:

- The encoder q_{ϕ} , parameterizes a Gaussian distribution $z \sim N(\mu_{\phi}(x), \Sigma_{\phi}(x))$.
- The decoder p_{θ} , reconstructs from the sampled latent vectors.

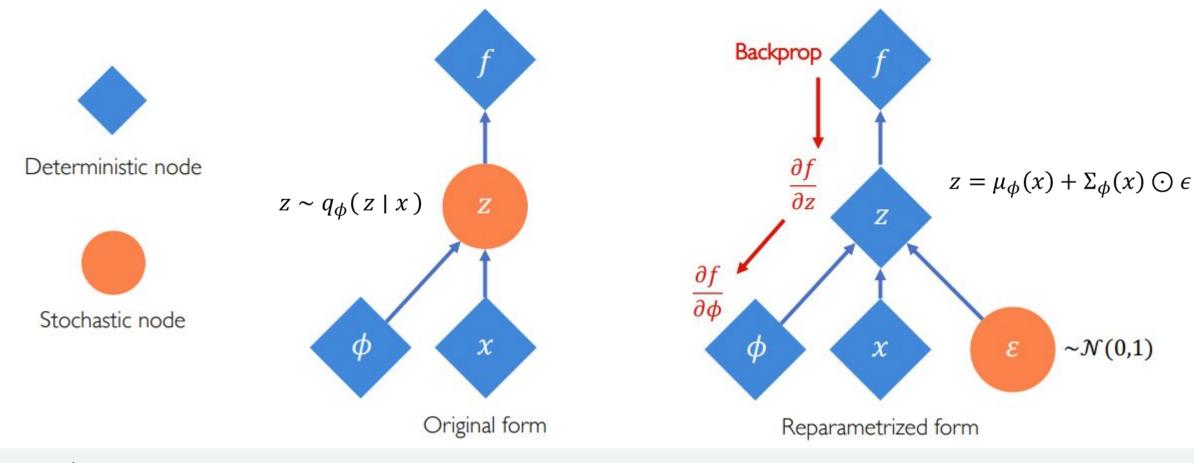


- The latent space encodes **continuous features**.
- VAEs can generate new samples that look like the inputs.

Intro to Deep Learning

Reparameterization Trick

Issue: cannot backpropagate through stochastic (sampling) nodes



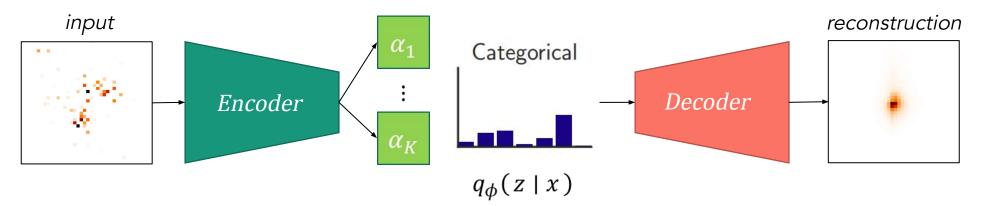
Lorenzo Valente

Categorical VAE

<u>Categorical Reparameterization with Gumbel-Softmax</u> <u>The Concrete Distribution: continuous relaxation of</u> <u>discrete random variables</u>

Categorical VAEs are *discrete latent variable* models:

- The encoder q_{ϕ} , parameterizes up to K Categorical distributions with C classes each.
- The decoder p_{θ} , reconstructs from the sampled latent vectors.



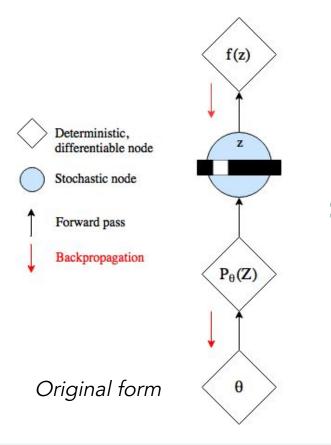
- The latent space encodes **discrete features**: finite and enumerable quantities, like counts.
- The Categorical is relaxed by a **temperature** parameter, $\tau: \tau \to 0$ (categorical), $\tau \to \infty$ (uniform).

Concrete Reparameterization with Gumbel-Softmax

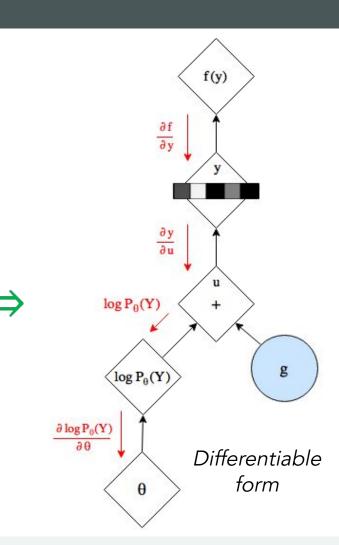
The Concrete Distribution: continuous relaxation of discrete random variables

Gumbel-Softmax Trick

Issue: the categorical distribution is not differentiable

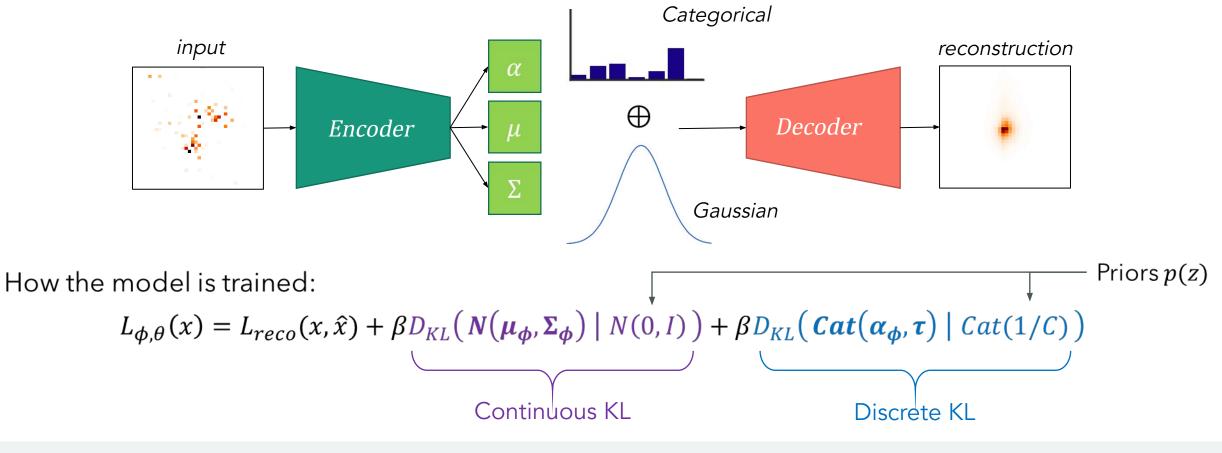


To reparameterize: 1. Forward encoder to get logits $\alpha = q_{\phi}(x)$ 2. Sample from Uniform distribution $u \sim U(0,1)$ 3. Compute Gumbel noise g $g = -\log(-\log u)$ 4. Get the Gumbel-Softmax samples $q = softmax(\frac{\alpha + g}{\tau})$



Joint-VAE

Can encode both *continuous* and *discrete* features:



Anomaly Detection

Reconstruction-based Latent-based Pros & Cons

Reconstruction-based Anomaly Scores

AD scores can be defined from **reconstructed images** x':

• **MSE**: sum of squared differences of pixel values P

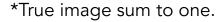
 $S_{MSE}(x, x') = \sum_{p \in P} (x_p - x'_p)^2$

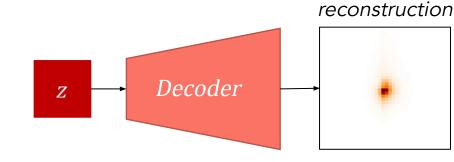
• BCE: sum of binary-cross entropies on pixels (note: only if normalized in [0, 1])

$$S_{BCE}(x, x') = -\sum_{p \in P} x_p \log x'_p + (1 - x_p) \log(1 - x'_p)$$

- **Dice** (see ref.): measures the overlap between the predicted and original image
- **PixelDiff**: difference of pixel sums (*)

$$S_{diff}(x, x') = 1 - \sum_{p \in P} x'_p$$





 $S_{Dice}(x, x') = \frac{\sum_{p \in P} x_p^2 + \sum_{p \in P} x_p'^2}{2\sum_{m \in P} x_m \cdot x_m'}$

Latent-based Anomaly Scores

AD scores defined from the **joint latent space** $z = (\alpha, \mu, \Sigma)$:

- Idea: KL divergence between learned distribution and prior!
- **KL Continuous**: divergence between learned Normal $N(\mu, \Sigma)$ and standard Normal prior N(0, I)

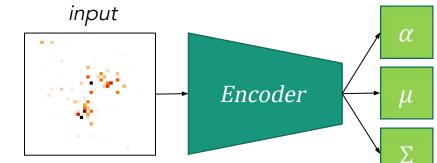
$$S_{KL,cont}(\mu,\Sigma) = -\frac{1}{2}\sum_{i}(1 + \log \Sigma_{ii} - \mu_i^2 - \exp \Sigma_{ii})$$

• **KL Discrete**: divergence between relaxed Categorical $Cat(\alpha, \tau)$ and the *uniform* Gumbel-Softmax prior Cat(1/C) - where C is the number of classes.

$$S_{KL,disc}(\alpha) = \sum_{i} (\pi_i \log \pi_i) - (\pi_i \log 1/C)$$
 where $\pi = softmax(\alpha)$

*Sums are over latent dimensions.

Lorenzo Valente



Discussion: Pros & Cons

Reconstruction-based AD:

- Easier to define anomaly scores, e.g. from common loss functions and metrics.
- Scores values can be interpreted by image quality metrics or visual inspection.
- Requires forward pass of whole model (encoder + decoder): slower.

Latent-based AD:

- Possibly difficult to interpret: high-dim latent space cannot be visualized.
- Scores can be difficult to design, e.g. analytical KLD but equally performant.
- Faster: requires only encoder predictions.
- Suitable for model optimization and FPGA deployment.

Model Acceleration

Quantization FPGA Study

Compression: Quantization with <u>QKeras</u>

Quantization transforms floating-point arithmetic to fixed-point precision:

- Less #bits to reduce memory footprint, and FPGA resources.
- Quantization is applied on both weights, and activations.
- Quantization-Aware-Training (QAT) maintains high accuracy at low-precision <16, 6>: total with of 16bits, 10bits for floats and 6bits for integers.
- Yields lower latency and energy consumption [J] (by QTools).

Model	Total Energy [µJ]
Reduced Encoder	5.4957
Quantized Encoder	3.3434

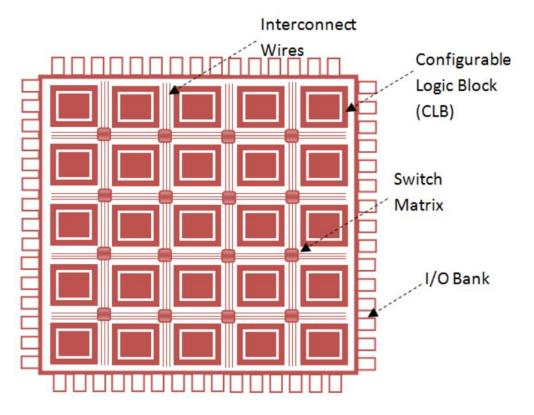
Energy consumption reduced by 39%

Not quantized:

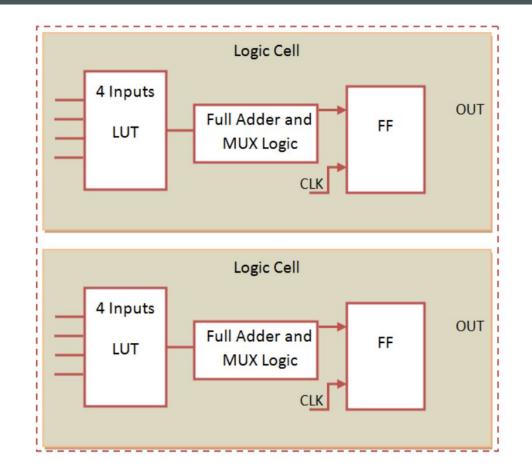
Layer (Type)	Energy [nJ]		
dconv_b0 (Conv2D)	87.9		
conv1_b0_0 (Conv2D)	1382.4		
conv2_b0_0 (Conv2D)	1382.4		
dconv_b1 (Conv2D)	432.0		
conv1_b1_0 (Conv2D)	540.0		
conv2_b1_0 (Conv2D)	540.0		
conv1_b1_1 (Conv2D)	540.0		
conv2_b1_1 (Conv2D)	540.0		
dconv_b2 (Conv2D)	27.0		
conv1_b2_0 (Conv2D)	5.4		
conv2_b2_0 (Conv2D)	5.4		
conv_fin (Conv2D)	2.7		
z_categorical (Dense)	1.5		
z_mean (Dense)	2.4		
z_var (Dense)	2.4		

Field-Programmable Gate Arrays

FPGAs are hardware-programmable devices:



An FPGA is made of many replicated units.



A configurable logic block.

The HLS4ML Python Package

ML models have to be translated to Hardware Description Language (HDL) to deploy on FPGA:

HLS4ML does this. Keras Converts layers to • **TensorFlow** PyTorch High Level Synthesis Co-processing kernel hls 4 ml ... code, then C++. model It optimizes also. • Finally, proprietary compressed HLS HLS model SW compilation. conversion project **Custom firmware** design • Synthesized code Usual machine learning software workflow can be simulated tune configuration before deployment. precision reuse/pipeline

FPGA Implementation Feasibility Study

FPGA are programmable accelerators that can enable **real-time inference**:

- Network synthesis is done via <u>HLS4ML</u> toolkit.
- From a synthesized layer or block, we can estimate the **resource factor** ρ via:

Formula based on convolution computational complexity from [ref]: $O(k^2(hw)/sd_{in}d_{out})$ $\rho(a,b) = \frac{(h_{in}^a/s) \times (w_{in}^a/s) \times d_{in}^a \times d_{out}^a}{(h_{in}^b/s) \times (w_{in}^b/s) \times d_{in}^b \times d_{out}^b}$

- AMD/Xilinx Alveo U250
- To **estimate** FPGA resources (e.g., LUTs) multiply ρ by a known layer or block:

conv2_b0_0 won't fit in FPGA, so we estimated its resource consumption.

	Layer Name	$h_{in}, w_{in}, d_{in}, d_{out}$	DSP (%)	LUT (%)	FF (%)	BRAM (%)
\Rightarrow	conv2_b0_0	20,20,16,10	752(6)	<i>6189696</i> (358)	229536(~7)	288(5)
	conv2_b1_1	10,10,20,5	47(~0)	386856(22)	14346(~0)	18(~0)
	dconv_b2	5, 5, 4,4	15(~0)	309544(17)	9352(~0)	4(~0)
	final block	5, 5, 4,2	851(6)	91763(5)	28074(~0)	377(7)

Results

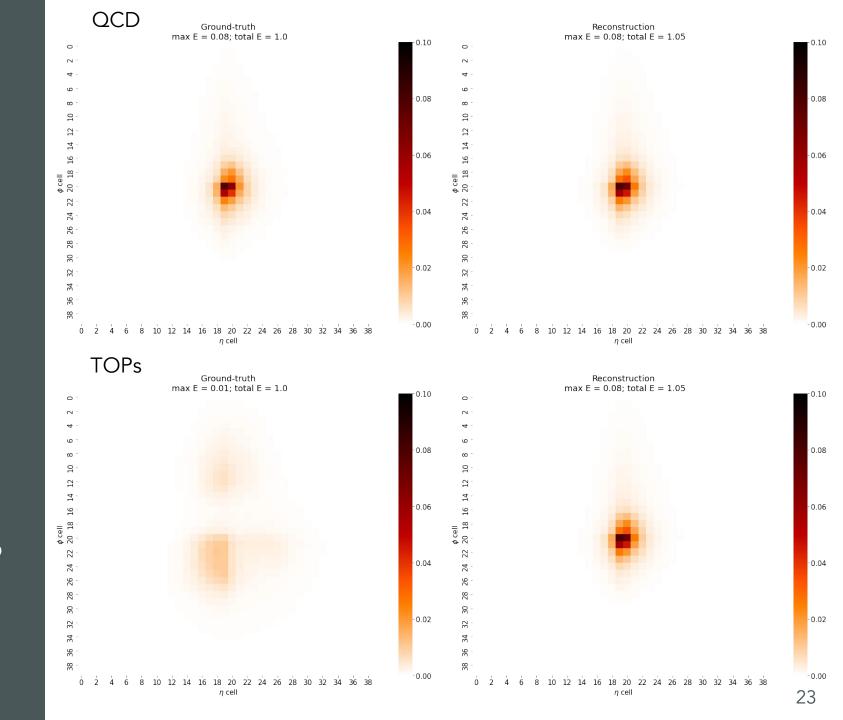
Reconstructions Anomaly Performance Comparison: large vs quantized

Reconstructed Samples

Reconstructed images *averaged* over test-set.

The ground-truth is on the left.

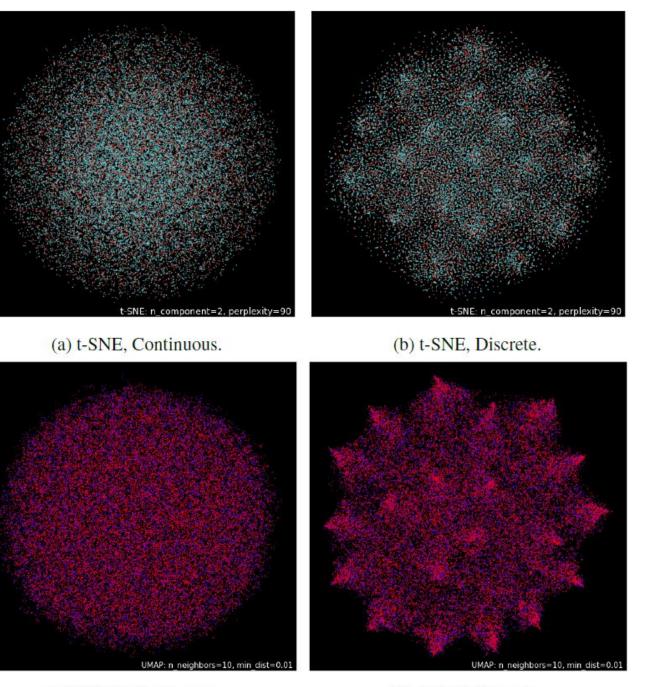
- QCD (top-row) are closely reconstructed: *low error*.
- Tops (bottom) are predicted to be QCD-like: *high error*.



Joint Latent Space

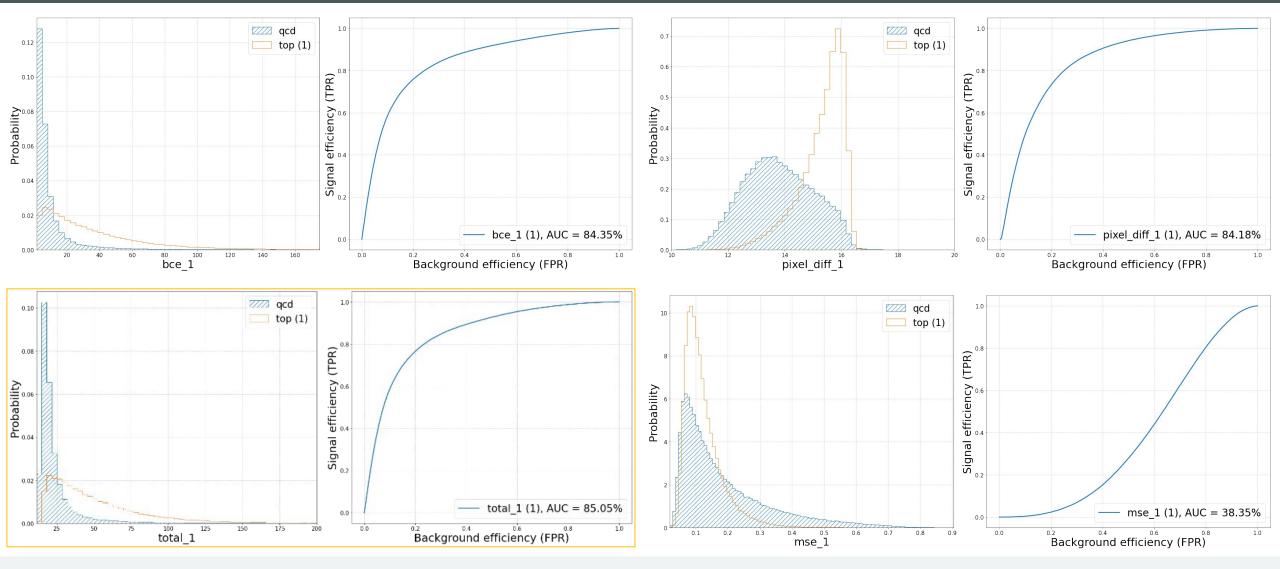
Learned latent spaces by our Joint-VAE; projected to 2d.

- Spaces: a 32-d Gaussian, and 20-d Categorical.
- We can see the 20 class-clusters for the categorical space.



⁽c) UMAP, Continuous.

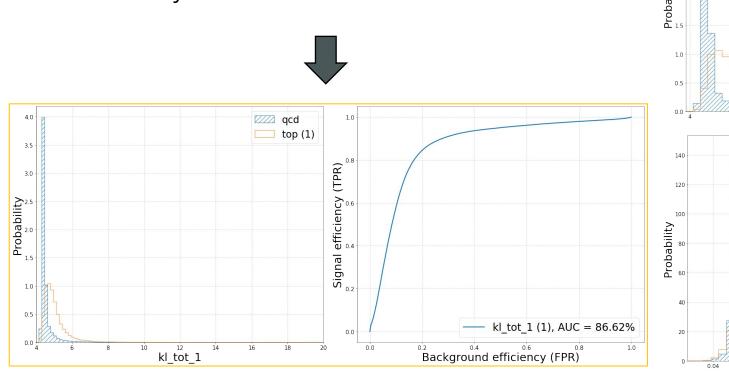
Reconstruction-based Scores: Large Model

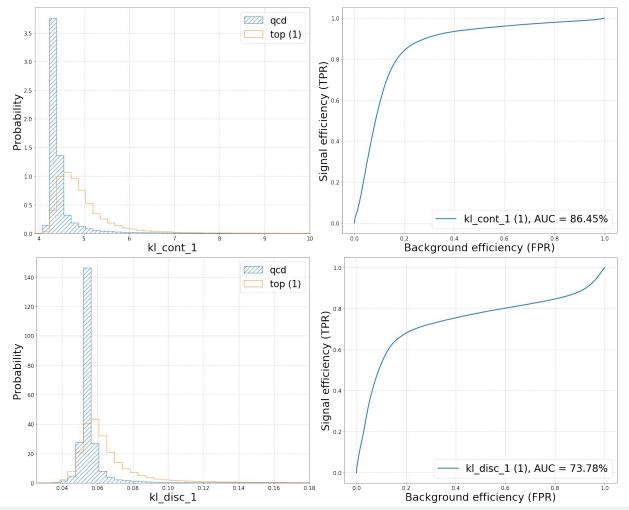


Lorenzo Valente

Latent-based Scores: Large Model

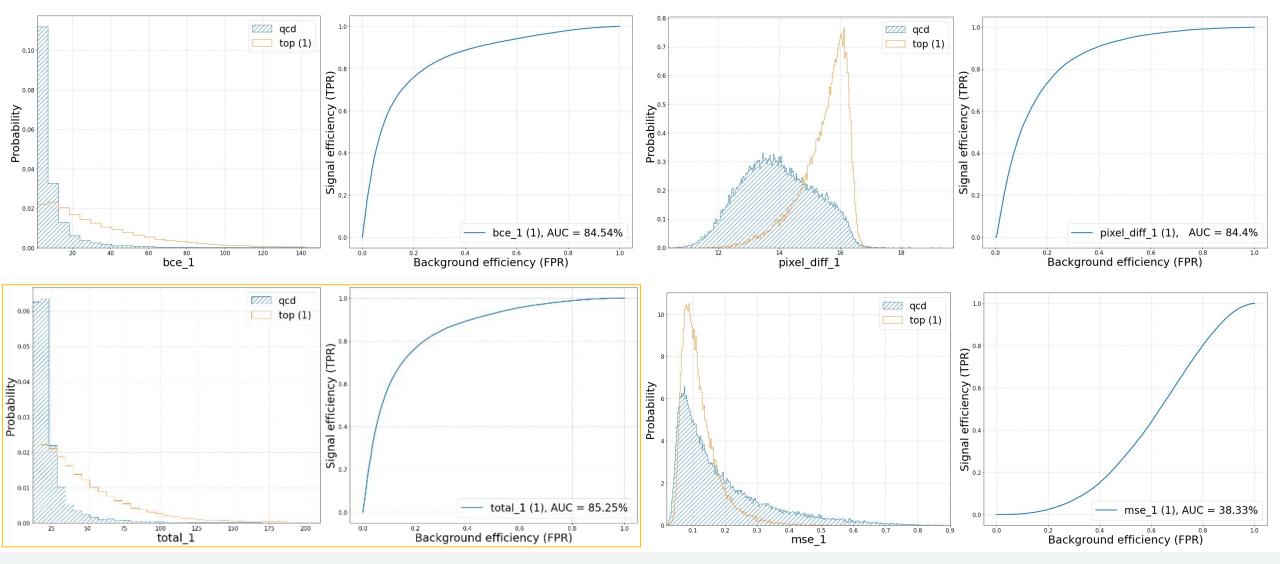
By combining both continuous and discrete KL divergences, is possible to further improve the anomaly score.





Lorenzo Valente

Reconstruction-based Scores: Quantized Model

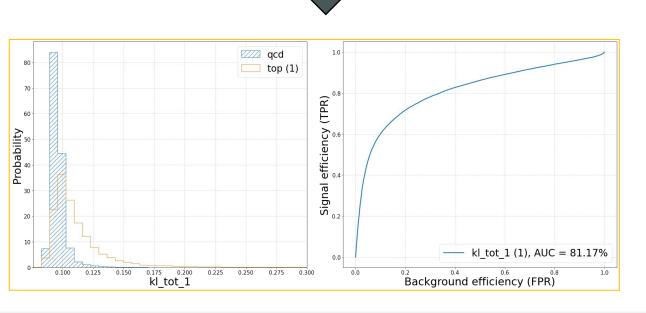


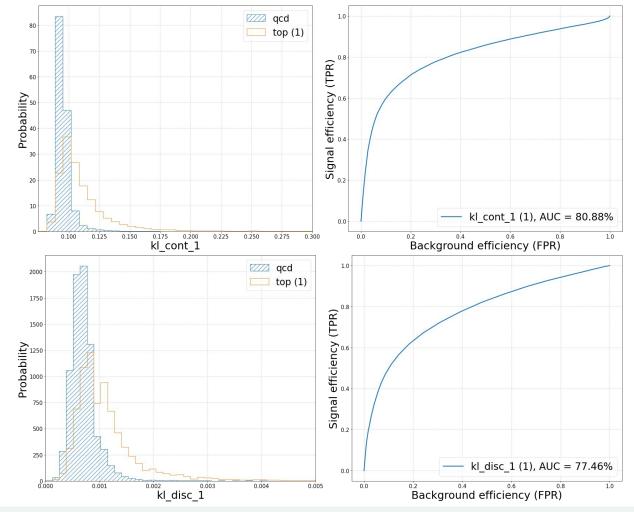
Lorenzo Valente

Latent-based Scores: Quantized Model

By quantizing we lose performance also on the latent space, so the KL scores.

But the trend is maintained.





Lorenzo Valente

Comparison: Large vs Quantized Model

Summary of ROC-AUC performance per metric:

- Large model has 262k (encoder) + 545k (decoder) params: 6 residual blocks.
- **Quantized model** has 10k (**constraint***: max. 1024 params per layer) + 545k params: 4 residual blocks.
- Latent dimensions for both models are 32 (continuous) and 20 (discrete).
- Decoder is the same \Rightarrow similar AD performance.
- #params and quantization impacts on encoder, KL-based metrics.

*Constraint is due to Vivado synthesis.

AD Score	Large	Quantized
MSE	38,35%	38,33%
Pixel-diff	84,18%	84,4%
BCE	84,35%	84,54%
Total (Dice + BCE)	85,05%	85,25%
KL Cont.	86,45%	80,88%
KL Discrete	73,78%	77,46%
KL Total (Cont. + Disc.)	86,62%	81,17%

Lorenzo Valente

Conclusions

Summary Limitations Outlook

Variational Auto-Encoders are suitable models for anomaly detection:

- We don't assume any specific signal \Rightarrow not sensitive to particular BSM scenario.
- The model is only trained to reconstruct the QCD background.
- Combining both continuous and discrete latent spaces achieves better AD performance.
- Latent-based AD is competitive with reconstruction-based scores, allowing to deploy only the encoder model.
- Model compression via weight and activation quantization can be done with Qkeras: saving energy, memory, and accelerator resources.
- Model synthesis for FPGA deployment can be done by HLS4ML.

Limitations and Outlook

General limitations of such kind of approaches:

- Need test samples of different kind of signals to asses generalization to BSM models.
- The VAE method is simple to train, but optimizes a different objective (i.e. reconstruction loss)
 ⇒ we have little control about maximizing the target AD score (e.g. KL-divergence)
- FPGA deployment can be challenging: accelerator resources are limited while DL layers are costly (like convolutions.), especially on image-like inputs.
- Moreover, vendors can add additional constraints: like maximum #params per layer.
- Limited support of libraries: for example HLS4ML is compatible with few common layers.
- Need better methods that yield very compact models: knowledge distillation?

github.com/LorenzoValente3/JointVAE4AD

Thanks for the Attention!

Questions?

Contacts:

lorenzo.valente3@studio.unibo.it

luca.anzalone2@unibo.it

marco.lorusso11@unibo.it

ALMA MATER STUDIORUM Università di Bologna