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INTRODUCTION
• ongoing work aiming at studying and optimising the physics potential of future collider experiments (principally FCCee and CepC)


• case study: τ-identification with the IDEA dual-readout calorimeter (DRC) concept


• leverage modern machine learning methods based on differentiable deep neural networks


• study performance using only standalone DRC information 


• helps also in optimising the detector and design of the readout electronics


• tasks studied: 

• classification of τ-decays and separation from QCD jets based on Dynamic Graph Neural Networks (DGCNN)


• development of a novel Bayesian-DGCNN for robust estimation of NN predictions


• DGCNN-based object detection (identification of tau/jet constituents) for proto particle-flow algorithms


• evolutions & ononging work: 

• improve object detection capabilities with hybrid architectures: GNN + encoder/decoder Transformer


• model acceleration on FPGAs for real-time use (triggers/monitor of physics streams/…)


• plan to use the results of these studies to prepare one or more tutorials on advanced topics (Bayesian-NN, Hybrid architectures, Model Compression, …) for 
ML_INFN/AI_INFN 
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FCC-ee & -hh
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original study requested by ESPP in 2013, started in 2014 as main way to guarantee research continuity in 
HEP at CERN in the post HL-LHC era

https://link.springer.com/article/10.1140/epjst/e2019-900045-4FCC CDRs:

integrated project in two consecutive phases:


-stage 1: FCC-ee - ~90-400 GeV e+e- collider as Higgs, EW and top factory at the maximal achievable luminosity

-stage 2: FCC-hh - ~100 TeV hadron collider at the energy frontier + optional ions/eh machines


complementary physics goals & common infrastructures and civil engineering 


https://link.springer.com/article/10.1140/epjst/e2019-900087-0



FCC-ee LUMINOSITY
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luminosity x103÷5 LEP thanks to the use of techniques developed for B-factories

- independent rings for e+ and e-: more bunches, higher currents w/o parasitic collisions 

- crab waist and asymmetric IP, and continuous injection

- parameters optimised to keep same totale power for synchrotron radiation at all CM energies (100 MW) 


- total consumption with 50% of the klystrons active is 200 MW (compare with LHC: 210 MW and HL-LHC: 260 MW)

∫ Ldt ∼ 1 − 40 ab−1/year
HZ Z



FCC-ee CM ENERGY
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-physics at the Z pole allows study of light fermions (τ and b - factory)

-clean environment and substantial yields open the possibility to study 
the properties of gluons in higgs decays:

Z WW ZH e VBF-H tt̄

e+e− → HZ → ggμ+μ−

15 years physics: 4 (Z) + 2 (WW) + 3 (H) + 1 LS + 5 (tt) not necessarily in this order …



FCC-ee CONCEPTUAL REFERENCE DETECTORS
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Clic-Like Detector: adapted from CLIC design International Detector for Electron-positron Accelerators: 
specific design for FCC-ee / CepC

- 2T B-field (CMS-style)

- Silicon ID (pixel + tracker)

- 3D imaging Silicon-tungsten ECAL

- Scintillator + FE HCAL

- MS: steel yoke instrumented with RPCs

- 2T SC solenoid 2T ultra-thin and transparent before calorimeters

- Silicon vertex detector + short-drift, ultra-light wire chamber

- Silicon wrapper pre-shower/timing counter

- Single Dual-readout calorimeter for EM&HAD calorimetry + optional crystal DR EM

- MS: thin iron yoke equipped with RPCs

strong involvement of 
the Italian community



DRC PRINCIPLE
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different patterns of S vs C light from different particles, 
combined with the fine segmentation provided by the fibres 
can be leveraged also for powerful particle identification … 

correct shower energy event by event for non-compensation by 
measuring the EM fraction in hadronic shower by sampling with two 
readouts of different e/h response: Cherenkov (C) mostly sensitive 
to the em shower component, Scintillation (S) sensitive to all

two equations in two 
unknowns: fem and E

 fluctuations largely determine 
energy resolution for jets

⟨ fem⟩



IDEA DRC FULL SIMULATION
• full G4 simulation of the calorimeter geometry: 


• includes B field and solenoid material in front of the 
calorimeter


• fiber-sampling calorimeter: Cu absorber, 1mm fibres, 
1.5mm pitch


• read out of each single fibre via SiPM


• 130 M channels, excellent granularity and lateral shape 
sensitivity: 
 
                      Δθ, Δϕ = ~0.035º


• parametrised simulation of SiPM readout and signal 
processing


• dark counts, crosstalk, afterpulses, saturation, noise, ... 
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DATASETS

• Pythia8 e+e- → Z → ττ and qq at Z pole 


• 5000 events for each decay mode
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• Information available for each fibre:


• geometrical quantities: Δθ, Δϕ wrt the tau/jet cluster center


• energetic quantities: # of photo-electrons in fibres and energy (scintillation and Cherenkov)


• SiPM information (1 SiPM per fibre): Integral and Peak of the SiPM output, Time of Arrival, Time over 
Threshold, Time of Peak


• Ground truth labels:


• fiber type (scintillating or cherenkov)


• decay type label
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MAIN ISSUES IN TRAINING A DL MODEL TO IDENTIFY 
TAUS IN DRC

- sparsity of data representation: fired fibres are 5-10% of the total ← makes use of 
CNN architectures inefficient and hard to train


- solution: use point-cloud/graph representations


- ability to extract confidence measures on the prediction of the ANN models ← modern 
modern ANNs are known to be not well calibrated (e.g. softmax outputs vs true class 
probabilities) 


- solution: calibrate the ANN output, for example by using dropout to adjust the 
output, or by using conformal predictions or bayesian weights to directly quantify 
the model uncertainty 
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DATA REPRESENTATION
• Image-based: treating the energy deposition on each fiber as the 

pixel intensity creates an image of the event in fixed-shape mesh


• natural representation for Convolutional Neural Networks


• unclear how to incorporate additional information from the fibers


• very sparse and inefficient representation: jets/tau decays have 
O(10) to O(100) particles → more than 90% of the pixels are 
blank 


• Point cloud-based: unordered sets of entities distributed 
irregularly in space, analogous to the point cloud representation 
of 3D shapes


• clouds allow rich internal structures


• straightforward to incorporate additional information of the 
fibers (fibre type, energy, time information, …) 


• the architecture of the neural network has to be carefully 
designed to fully exploit the potential of this representation → 
Graph Neural Networks (also RNN, Transformers, …)

13

boosted W→qq’ graph representation

dim: 15xNfeat

     fixed-mesh image rap.

dim: 28x28xNfeat 

VS

Example



DGCNN ARCHITECTURE
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Y. Wang et al., arXiv:1801.07829 [cs.CV]

Input: 

x = {θ, ϕ, geometrical features, 
       SiPM features, …}                                       

- simple and flexible architecture optimised for point cloud inputs able to learn both local (trough the edge 
convolution) and global (through skip connections & feature aggregator) structures on the input data


- simplify inclusion of additional features and SiPM information 

- # of input fibres fixed and treated as model hyper parameter, discarding those with lowest signals or adding 

zero valued vectors and masking in case of events with lower active fibres

- hyper-parameters chosen using a validation set

local feature extractor feature aggregator MLP global 
classifier



EDGE CONVOLUTION
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Regular convolution operators cannot be applied on point clouds:

- points distribution is usually irregular (unlike uniform grids of the pixels in an image)

- they’re not invariant under permutation of the points 

Viable solution: EDGE convolution: point cloud represented as a graph with Vertices (the points themselves) and Edges 
(connections between each point to its k nearest neighbouring points): results in a regular distribution for each point, for 
which is possible to define convolution operations

CNN-conv

EDGE-conv

h′￼o =
8

∑
i=0

hiwi

Compute k-nn 

directed graph

Extract edge features with 
a shared linear layer

Aggregate edge 
features by 

max-pooling

ex. k=6

∑
j∈Nk(hi)

; max
j∈Nk(hi)

; ⋯

fw(hi, hj) = ReLU(w(hj − hi) + w0hi)

h′￼i = □j∈Nk(hi) fw(hi, hj)



τ DECAY IDENTIFICATION WITH DGCNN
• Classification task:


• 8-classes: 7 tau decays + QCD jets


• training/validation/test sets: 22k/6k/7k events (balanced among classes)


• Data-preprocessing:


• simple geometrical clustering, no specific selection or fiducial volume applied


• saved fibres signal around each cluster (√Δθ2+Δϕ2) < 1)


• DGCNN inputs:


• jet/tau representation: 2D point-cloud of fibres coordinates 


• fiber type (S, C), #photo-electrons, SiPM’s: Integral and Peak of the SiPM output,  
ToT, ToA, ToP (in different combinations)  

16S.Giagu, M. di Filippo, L.Torresi, Tau leptons identification with Graph Neural Networks at future electron-positron colliders,  Front. Phys., Volume 10 - 2022

https://www.frontiersin.org/articles/10.3389/fphy.2022.909205/full


DATA AUGMENTATION VIA DROPOUT
• overfitting and memorisation for the DGNN model controlled using two different implementations of the dropout regularisation:


• (traditional) in the network: some of the parameters of the last MLP block are randomly zeroed during the training phase


• (as data augmentation/perturbation regularisation) at input level: some of the fired fibers are switched off before to be 
exposed to the network


• much better generalisation obtained leveraging both methods


• dropout levels optimised on validation set

17S.Giagu, M. di Filippo, L.Torresi, Front. Phys., Volume 10 - 2022

INPUT LEVEL

DROPOUT

https://www.frontiersin.org/articles/10.3389/fphy.2022.909205/full


IDEAL PERFORMANCE ON TEST SET
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average accuracy: 
90.8%

input features:  coordinates, type of fibre (S/C), and #of photo-electrons in each fibre

Predicted BR

Tr
ut

h 
BR

τ →eνν

τ →πν

τ →ππ0ν

τ →ππ0π0ν

τ →πππν

τ →ππππ0ν

Z →qq jets

τ →
eνν

τ →
πν

τ →
ππ 0ν

τ →
ππ 0π 0ν

τ →
πππν

τ →
ππππ 0ν

Z →
qq jets

τ →
 μνν

τ → μνν

stat. uncertainty on 
accuracies ~3÷5% 

small confusion only 
within topologically 

similar decays
small confusion only 
within topologically 

similar decays

8-class classification task w/ DGCNN

S.Giagu, M. di Filippo, L.Torresi, Front. Phys., Volume 10 - 2022

https://www.frontiersin.org/articles/10.3389/fphy.2022.909205/full


PERFORMANCE ONLY USING GEOMETRICAL OR GEOM. + 
FIBER TYPE INFORMATION
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input features:  coordinates only   coordinates + type of fibre (S/C)

average accuracy: 73.7%
 average accuracy: 88.3%

double-readout geometry alone allows excellent tau identification



PERFORMANCE USING REALISTIC SiPM READOUT INFORMATION
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Tr
ut

h 
BR

Predicted BR

τ →eνν

τ →πν

τ →ππ0ν

τ →ππ0π0ν

τ →πππν

τ →ππππ0ν

Z →qq jets

τ →
eνν

τ →
πν

τ →
ππ 0ν

τ →
ππ 0π 0ν

τ →
πππν

τ →
ππππ 0ν

Z →
qq jets

τ →
 μνν

τ → μνν

using only geometry and 

Integral/Peak of the signal

adding also SiPM 
timing information

average accuracy: 
88.8%

average accuracy: 
91.4%

comparable identification performance w/r the ideal case  



CHECK OF POSSIBLE BIAS ON ENERGY

21
no bias observed over distribution of total energy per event



UNCERTAINTY IN THE CLASSIFICATION: BAYESIAN-DGCNN
• Neural networks based on point values for weights may suffer of overconfidence when 

analysing new data especially for predictions in regions with few or w/o examples in the 
training set 


• Bayesian neural networks mitigate the problem by introducing probability distributions over 
the weights and predicting distributions instead of point values 


• a Bayesian-NN learns a variational approximation of the true posterior distribution P(w|D), 
and predict an estimate of the expected value EP(w|D)[P(y|x,w)] → since the weights are 
random variables, each predictions is a random variable too


• allows to measure uncertainty, identify outliers in the input, regularise the whole model


• Designed and implemented in pytorch a full Bayesian version of a DGCNN (leveraging the 
Bayes by Backprop algorithm (https://arxiv.org/abs/1505.05424):

22

p(y |x, D) = ∫ p(x |y, w)p(w |D)dw

bayesian 
inference generally intractable


via MC integration
replace it with a variational  
(eg optimisation) problem

p(w |D) ≈ qθ(w |D)

approximate p with a more tractable parametric 
distribution q (eg. gaussian)


w/ learnable parameters (eg a NN) 

https://arxiv.org/abs/1505.05424


BAYES BY BACKPROP
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KL[qθ(w |D)∥p(w |D)] = ∫ qθ(w |D)log
qθ(w |D)
p(w |D)

dw we have another integral here, but now q is more 
tractable and we can approximated it via MC sampling

θ* ≈ arg min
θ

n

∑
i=1

log qθ(w(i) |D) − log p(w(i)) − log p(D |w(i))

with  samples sampled from w(i) qθ(w |D)

find optimal  by minimising the  
Kullback-Leibler divergence between p and q

θ* θ* = arg min
θ

KL[qθ(w |D)∥p(w |D)]

in practice as  is an ANN, the Kingma local reparameterization trick is used to make the whole 
expression differentiable  

qθ

Blundell et al., arXiv:1505.05424

https://arxiv.org/abs/1505.05424


BAYESIAN-DGCNN
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{1024}      {512, 256}      

S.Giagu, M. di Filippo, L.Torresi, Front. Phys., Volume 10 - 2022

- all bayesian layers (EdgeConv, MLP, etc.), w/ gaussian priors (uncorrelated between layers and neurons) 

- better classification performance wrt the point DGCNN

- class probabilities better aligned with physics expectations

τ± → π±π0ντ
τ± → π±π0ντ

τ± → π±π0π0ντ

https://www.frontiersin.org/articles/10.3389/fphy.2022.909205/full


BAYESIAN-DGCNN
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τ → ππ0ν
vs others

τ → ππ0π0ν
vs others

τ → πππν
vs others

τ → ππππ0ν
vs others

ROC / AUC



BAYESIAN-DGCNN
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B-DGCNN:10 samples per prediction

no threshold on minimum confidence

B-DGCNN:10 samples per prediction

minimum threshold on confidence 0.7



JET CONSTITUENTS ID
• DGCNN and dual-readout calorimeter high granularity can be exploited for object (particle) detection inside taus and jets


• a proto-step for a particle flow algorithms


• can be implemented with a similar approach as in segmentation tasks (eg pixel/node/fiber-level classification) 


• DenseNet like modification of the DGCNN architecture for a segmentation task:


• identify the particle associated to the larger energy deposit in each fibre  


• label each fibre by extrapolating Monte Carlo truth particles from production to the DRC into the  
IDEA magnetic field


• train the DGCNN to predict the label associated to each fibre


• Initial study: using point DGCNN only                                               
27

Segmentation

18

• Results:

• Accuracy: 91.3% 

• IoU (mean over labels): 53.6%

• Reconstruct energy identifying each secondary particle 

• First step -> classify directly at the level of each single fibre

• Slight modification of DGCNN architecture

skip connections to increase 
sensitivity to multiscale features … 

logits provided per-fibre 
(segmentation task)



RESULTS SEGMENTATION
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Two nice examples: τ± → π±π0ντ → π±γγντ
tau visibile energy reconstructed using:


- DRC for photons

- MC truth for other particles 


comparison of the visible energy distributions obtained when 
photons are identified by the DGCNN and when using the MC truth 

Examples of correct segmentation
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Ground Truth Reconstructed

Examples of correct segmentation
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Ground Truth Reconstructed

Eτ [GeV]

DGCNN
MC 
truth

ex 1

ex 2



RESULTS SEGMENTATION
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Two “less nice” results:

ex 1

ex 2

τ → eνeντ

τ → ππ0ντ → πγγντ
w/ overlapping photons



ONGOING DEVELOPMENTS

30graph features

• improve jet constituents ID by moving from DGCNN segmentation to Graph-Transformer object detection


• hybrid architecture: GNN → high-level representation → Transformed encoder/decoder →  bounding box predictions


• GNN encode the graph for the transformed architecture and extracts compact representation of the global graph structure


• the transformer encoder process this data to produce an embedding context representing the whole graph


• this embedding is passed to a transformer decoder that takes as input a small fixed  
 of learned positional embeddings (object queries) and attends to the encoder output


• the self-attention and the encoder-decoder attention over the embedding and the object  
queries allows the model to analyse all objects together using pair-wise relations between  
them, and to independently decode it into box coordinates and class labels by a FFN head


• the FFN head is a shared MLP that predict class and bounding box  
for each object 


• results will be ready in time for the fall meetings/conferences …

point cloud DGCNN


