#### **GRAPH NEURAL NETWORK PER** L'IDENTIFICAZIONE DI LEPTONI TAU IN ESPERIMENTI AI FUTURI COLLIDER e<sup>+</sup>e<sup>-</sup>

S. Giagu (Sapienza UdRoma and INFN)

Riunione settimanale ML\_INFN - 3 Luglio 2023







Istituto Nazionale di Fisica Nucleare







## INTRODUCTION

- ongoing work aiming at studying and optimising the physics potential of future collider experiments (principally FCCee and CepC)
  - case study: τ-identification with the IDEA dual-readout calorimeter (DRC) concept
    - leverage modern machine learning methods based on differentiable deep neural networks
    - study performance using only standalone DRC information
    - helps also in optimising the detector and design of the readout electronics

#### • tasks studied:

- classification of τ-decays and separation from QCD jets based on Dynamic Graph Neural Networks (DGCNN)
- development of a novel Bayesian-DGCNN for robust estimation of NN predictions
- DGCNN-based object detection (identification of tau/jet constituents) for proto particle-flow algorithms
- evolutions & ononging work:
  - improve object detection capabilities with hybrid architectures: GNN + encoder/decoder Transformer
  - model acceleration on FPGAs for real-time use (triggers/monitor of physics streams/...)
- ML\_INFN/AI\_INFN

• plan to use the results of these studies to prepare one or more tutorials on advanced topics (Bayesian-NN, Hybrid architectures, Model Compression, ...) for



#### FCC-ee & -hh

original study requested by ESPP in 2013, started in 2014 as main way to guarantee research continuity in HEP at CERN in the post HL-LHC era

integrated project in two consecutive phases:

- -stage 2: FCC-hh ~100 TeV hadron collider at the energy frontier + optional ions/eh machines

complementary physics goals & common infrastructures and civil engineering



https://link.springer.com/article/10.1140/epjst/e2019-900045-4 FCC CDRs: https://link.springer.com/article/10.1140/epjst/e2019-900087-0

-stage 1: FCC-ee - ~90-400 GeV e+e- collider as Higgs, EW and top factory at the maximal achievable luminosity









### FCC-ee LUMINOSITY



luminosity x10<sup>3÷5</sup> LEP thanks to the use of techniques developed for B-factories - independent rings for e<sup>+</sup> and e<sup>-</sup>: more bunches, higher currents w/o parasitic collisions - crab waist and asymmetric IP, and continuous injection - parameters optimised to keep same totale power for synchrotron radiation at all CM energies (100 MW) - total consumption with 50% of the klystrons active is 200 MW (compare with LHC: 210 MW and HL-LHC: 260 MW)



100 000 Z / second

- 1Z/second at LEP
- 10 000 W / hour
  - 20 000 W in 5 years at LEP
- 1 500 Higgs bosons / day
  - 10-20 times more than ILC
- 1 500 top quarks / day

 $Ldt \sim 1 - 40 \, \mathrm{ab^{-1}/year}$ HZ Z

√s [GeV]



#### FCC-ee CM ENERGY

15 years physics: 4(Z) + 2(WW) + 3(H) + 1LS + 5(tt) not necessarily in this order ...



-physics at the Z pole allows study of light fermions (τ and b - factory)

the properties of gluons in higgs decays:



- -clean environment and substantial yields open the possibility to study  $e^+e^- \rightarrow HZ \rightarrow gg\mu^+\mu^-$







#### Clic-Like Detector: adapted from CLIC design



- 2T B-field (CMS-style)
- Silicon ID (pixel + tracker)
- 3D imaging Silicon-tungsten ECAL
- Scintillator + FE HCAL
- MS: steel yoke instrumented with RPCs

### **FCC-ee CONCEPTUAL REFERENCE DETECTORS**

International Detector for Electron-positron Accelerators: specific design for FCC-ee / CepC



- 2T SC solenoid 2T ultra-thin and transparent before calorimeters
- Silicon vertex detector + short-drift, ultra-light wire chamber
- Silicon wrapper pre-shower/timing counter
- Single **Dual-readout calorimeter for EM&HAD calorimetry** + optional crystal DR EM
- MS: thin iron yoke equipped with RPCs





### **DRC PRINCIPLE**

correct shower energy event by event for non-compensation by measuring the EM fraction in hadronic shower by sampling with two readouts of different e/h response: Cherenkov (C) mostly sensitive to the em shower component, Scintillation (S) sensitive to all



different patterns of S vs C light from different particles, combined with the fine segmentation provided by the fibres can be leveraged also for powerful particle identification ...









## **IDEA DRC FULL SIMULATION**



#### 



• full G4 simulation of the calorimeter geometry:



- includes B field and solenoid material in front of the calorimeter
- fiber-sampling calorimeter: Cu absorber, 1mm fibres, 1.5mm pitch
- read out of each single fibre via SiPM
- 130 M channels, excellent granularity and lateral shape  $\bullet$ sensitivity:

$$\Delta \theta$$
,  $\Delta \varphi = \sim 0.035^{\circ}$ 

- parametrised simulation of SiPM readout and signal processing
  - dark counts, crosstalk, afterpulses, saturation, noise, ...





### DATASETS



- Pythia8  $e^+e^- \rightarrow Z \rightarrow \tau\tau$  and qq at Z pole
- 5000 events for each decay mode

- Information available for each fibre:
  - geometrical quantities:  $\Delta \theta$ ,  $\Delta \phi$  wrt the tau/jet cluster center  $\bullet$
  - energetic quantities: # of photo-electrons in fibres and energy (scintillation and Cherenkov)  $\bullet$
  - $\bullet$ Threshold, Time of Peak
- Ground truth labels:
  - fiber type (scintillating or cherenkov)  $\bullet$
  - decay type label



SiPM information (1 SiPM per fibre): Integral and Peak of the SiPM output, Time of Arrival, Time over



0

1

 $\mathbf{2}$ 

3

4

 $\mathbf{5}$ 

6



#### **EXAMPLES OF EVENTS WITH FULL GRANULARITY**





#### **EXAMPLES OF EVENTS WITH FULL GRANULARITY**





#### MAIN ISSUES IN TRAINING A DL MODEL TO IDENTIFY **TAUS IN DRC**

- sparsity of data representation: fired fibres are 5-10% of the total  $\leftarrow$  makes use of CNN architectures inefficient and hard to train
  - **solution:** use point-cloud/graph representations

- ability to extract confidence measures on the prediction of the ANN models modern modern ANNs are known to be not well calibrated (e.g. softmax outputs vs true class probabilities)
  - solution: calibrate the ANN output, for example by using dropout to adjust the output, or by using conformal predictions or bayesian weights to directly quantify the model uncertainty



### DATA REPRESENTATION

- Image-based: treating the energy deposition on each fiber as the pixel intensity creates an image of the event in fixed-shape mesh
  Point cloud-based: unordered sets of entities distributed irregularly in space, analogous to the point cloud representation of 3D shapes
  - natural representation for Convolutional Neural Networks
  - unclear how to incorporate additional information from the fibers
  - very sparse and inefficient representation: jets/tau decays have O(10) to O(100) particles → more than 90% of the pixels are blank



- clouds allow rich internal structures
- straightforward to incorporate additional information of the fibers (fibre type, energy, time information, ...)
- the architecture of the neural network has to be carefully designed to fully exploit the potential of this representation → Graph Neural Networks (also RNN, Transformers, ...)

# ntation f the

## **DGCNN ARCHITECTURE**



#### local feature extractor $x = \{\theta, \phi, geometrical features, \}$ SiPM features, ...}

- simplify inclusion of additional features and SiPM information
- zero valued vectors and masking in case of events with lower active fibres
- hyper-parameters chosen using a validation set

Y. Wang et al., arXiv:1801.07829 [cs.CV]





- simple and flexible architecture optimised for point cloud inputs able to learn both local (trough the edge convolution) and global (through skip connections & feature aggregator) structures on the input data

- # of input fibres fixed and treated as model hyper parameter, discarding those with lowest signals or adding







## EDGE CONVOLUTION

Regular convolution operators cannot be applied on point clouds:

- points distribution is usually irregular (unlike uniform grids of the pixels in an image) - they're not invariant under permutation of the points

which is possible to define convolution operations







Viable solution: EDGE convolution: point cloud represented as a graph with Vertices (the points themselves) and Edges (connections between each point to its k nearest neighbouring points): results in a regular distribution for each point, for





## **τ DECAY IDENTIFICATION WITH DGCNN**

- Classification task:
  - 8-classes: 7 tau decays + QCD jets
  - training/validation/test sets: 22k/6k/7k events (balanced among classes)  $\bullet$
- Data-preprocessing:
  - simple geometrical clustering, no specific selection or fiducial volume applied • saved fibres signal around each cluster  $(\sqrt{\Delta\theta^2 + \Delta\phi^2}) < 1)$
- DGCNN inputs:
  - jet/tau representation: 2D point-cloud of fibres coordinates
  - fiber type (S, C), #photo-electrons, SiPM's: Integral and Peak of the SiPM output, ToT, ToA, ToP (in different combinations)

S.Giagu, M. di Filippo, L.Torresi, Tau leptons identification with Graph Neural Networks at future electron-positron colliders, Front. Phys., Volume 10 - 2022 16





## DATA AUGMENTATION VIA DROPOUT

- - exposed to the network
- much better generalisation obtained leveraging both methods
- dropout levels optimised on validation set



overfitting and memorisation for the DGNN model controlled using two different implementations of the dropout regularisation: • (traditional) in the network: some of the parameters of the last MLP block are randomly zeroed during the training phase • (as data augmentation/perturbation regularisation) at input level: some of the fired fibers are switched off before to be



S.Giagu, M. di Filippo, L.Torresi, Front. Phys., Volume 10 - 2022 17







## **IDEAL PERFORMANCE ON TEST SET**

8-class classification task w/ DGCNN

small confusion only within topologically similar decays

|       | τ→evv                               | 98.53 | 0.45  | 0.65  |   |
|-------|-------------------------------------|-------|-------|-------|---|
|       | τ →πν                               | 3.20  | 91.35 | 2.21  |   |
|       | τ →ππ <sup>0</sup> ν                | 1.34  | 3.49  | 86.87 |   |
| BB    | τ →ππ <sup>0</sup> π <sup>0</sup> ν | 0.46  | 0.25  | 12.09 | Ş |
| Truth | τ →πππν                             | 0.11  | 3.14  | 1.24  |   |
| •     | τ →ππππ <sup>0</sup> ν              | 0.16  | 0.30  | 1.82  |   |
|       | $\tau \rightarrow \mu \nu \nu$      | 1.24  | 0.25  | 0.06  |   |
|       | Z →qq jets                          | 0.13  | 0.21  | 0.21  |   |
|       |                                     | r ou  | × 12  |       |   |

stat. uncertainty on accuracies ~3÷5%

#### input features: coordinates, type of fibre (S/C), and #of photo-electrons in each fibre





small confusion only within topologically similar decays

Predicted BR

S.Giagu, M. di Filippo, L.Torresi, <u>Front. Phys., Volume 10 - 2022</u> 18





#### PERFORMANCE ONLY USING GEOMETRICAL OR GEOM. + FIBER TYPE INFORMATION

#### input features: coordinates only

|          | T→evv                                   | 90.36                                   | 4.07   | 2.21  | 0.03  | 0.00  | 0.00  | 3.34  | 0.00     |
|----------|-----------------------------------------|-----------------------------------------|--------|-------|-------|-------|-------|-------|----------|
| Truth BR | $T \rightarrow TTV$                     | 2.57                                    | 86.24  | 5.39  | 0.25  | 3.59  | 0.17  | 1.57  | 0.22     |
|          | $T \rightarrow \Pi \Pi^0 V$             | 2.10                                    | 18.92  | 72.67 | 2.76  | 1.97  | 1.01  | 0.27  | 0.30     |
|          | $T \rightarrow \pi \pi^0 \pi^0 V$       | 0.74                                    | 3.54   | 58.43 | 33.04 | 0.84  | 2.81  | 0.05  | 0.54     |
|          | τ →πππν                                 | 0.11                                    | 9.88   | 6.22  | 0.46  | 75.32 | 6.49  | 0.00  | 1.52     |
|          | $T \rightarrow \Pi \Pi \Pi \Pi \Pi^0 V$ | 0.11                                    | 1.49   | 9.30  | 2.90  | 38.28 | 43.75 | 0.05  | 4.12     |
|          | $\tau \to \mu \nu \nu$                  | 2.50                                    | 0.70   | 0.17  | 0.00  | 0.03  | 0.00  | 96.60 | 0.00     |
|          | Z →qq jets                              | 0.08                                    | 0.33   | 0.63  | 0.94  | 2.92  | 3.09  | 0.08  | 91.92    |
|          |                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ×<br>\ |       |       |       |       | × ×   | ~ ~<br>~ |
|          |                                         | -2                                      | 2      | 2     | 'ho2  | ToToL | TT    | ITTTO | ×42 S    |

#### **coordinates + type** of fibre (S/C)

| →evv                                                              | 90.36 | 4.07  | 2.21  | 0.03  | 0.00  | 0.00                    | 3.34  | 0.00  |       | T →evv                              | 96.95 | 0.79  | 0.62  | 0.03  | 0.00  | 0.00  | 1.58  | 0.03  |  |
|-------------------------------------------------------------------|-------|-------|-------|-------|-------|-------------------------|-------|-------|-------|-------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| →πv                                                               | 2.57  | 86.24 | 5.39  | 0.25  | 3.59  | 0.17                    | 1.57  | 0.22  |       | $T \rightarrow TTV$                 | 3.09  | 89.03 | 3.48  | 0.41  | 2.02  | 0.39  | 1.44  | 0.14  |  |
| →ππ <sup>0</sup> ∨                                                | 2.10  | 18.92 | 72.67 | 2.76  | 1.97  | 1.01                    | 0.27  | 0.30  | Ř     | $T \rightarrow \pi \pi^0 V$         | 1.77  | 4.83  | 80.45 | 9.25  | 1.61  | 1.67  | 0.16  | 0.25  |  |
| τπ <sup>0</sup> π <sup>0</sup> ν                                  | 0.74  | 3.54  | 58.43 | 33.04 | 0.84  | 2.81                    | 0.05  | 0.54  | lth B | τ →ππ <sup>0</sup> π <sup>0</sup> ν | 0.30  | 0.38  | 10.43 | 84.55 | 0.16  | 3.87  | 0.05  | 0.25  |  |
| πππν                                                              | 0.11  | 9.88  | 6.22  | 0.46  | 75.32 | 6.49                    | 0.00  | 1.52  | Tru   | Τ →ΠΠΠΛ                             | 0.16  | 3.52  | 1.38  | 0.35  | 84.82 | 8.79  | 0.03  | 0.95  |  |
| ппп <sup>0</sup> v                                                | 0.11  | 1.49  | 9.30  | 2.90  | 38.28 | 43.75                   | 0.05  | 4.12  | -     | τ →ππππ <sup>0</sup> ν              | 0.11  | 0.24  | 1.98  | 2.60  | 10.19 | 82.60 | 0.08  | 2.20  |  |
| μνν                                                               | 2.50  | 0.70  | 0.17  | 0.00  | 0.03  | 0.00                    | 96.60 | 0.00  |       | $\tau \to \mu \nu \nu$              | 2.53  | 0.48  | 0.11  | 0.00  | 0.03  | 0.00  | 96.82 | 0.03  |  |
| q jets                                                            | 0.08  | 0.33  | 0.63  | 0.94  | 2.92  | 3.09                    | 0.08  | 91.92 |       | Z →qq jets                          | 0.08  | 0.25  | 0.19  | 1.05  | 2.54  | 4.08  | 0.06  | 91.75 |  |
| Predicted BR Predicted BR                                         |       |       |       |       |       |                         |       |       |       | in jers                             |       |       |       |       |       |       |       |       |  |
| average accuracy: 73.7%                                           |       |       |       |       |       | average accuracy: 88.3% |       |       |       |                                     |       | )     |       |       |       |       |       |       |  |
| double-readout geometry alone allows excellent tau identification |       |       |       |       |       |                         |       |       |       |                                     |       |       |       |       |       |       |       |       |  |



#### PERFORMANCE USING REALISTIC SIPM READOUT INFORMATION

#### using only geometry and Integral/Peak of the signal

average accuracy: 88.8%



comparable identification performance w/r the ideal case

adding also SiPM timing information average accuracy: **91.4%** 



**Truth BR** 



### CHECK OF POSSIBLE BIAS ON ENERGY



no bias observed over distribution of total energy per event

#### **UNCERTAINTY IN THE CLASSIFICATION: BAYESIAN-DGCNN**

- Neural networks based on point values for weights may suffer of overconfidence when analysing new data especially for predictions in regions with few or w/o examples in the training set
- Bayesian neural networks mitigate the problem by introducing probability distributions over the weights and predicting distributions instead of point values
  - a Bayesian-NN learns a variational approximation of the true posterior distribution P(w|D), and predict an estimate of the expected value E<sub>P(w|D)</sub>[P(y|x,w)] → since the weights are random variables, each predictions is a random variable too
  - allows to measure uncertainty, identify outliers in the input, regularise the whole model
- Designed and implemented in pytorch a full Bayesian version of a DGCNN (leveraging the Bayes by Backprop algorithm (<u>https://arxiv.org/abs/1505.05424</u>):

$$p(y \mid x, D) = \int p(x \mid y, w) p(w \mid D) dw$$

bayesian inference

generally intractable via MC integration

replace it with a variational (eg optimisation) problem

![](_page_21_Figure_10.jpeg)

![](_page_21_Picture_11.jpeg)

#### $p(w \mid D) \approx q_{\theta}(w \mid D)$

approximate p with a more tractable parametric distribution q (eg. gaussian) w/ learnable parameters (eg a NN)

![](_page_21_Picture_14.jpeg)

### **BAYES BY BACKPROP**

find optimal  $\theta^*$  by minimising the Kullback-Leibler divergence between p and q

θ

$$\mathsf{KL}[q_{\theta}(w \mid D) \parallel p(w \mid D)] = \int q_{\theta}(w \mid D) \log \frac{q_{\theta}(w \mid D)}{p(w \mid D)} dw$$

![](_page_22_Figure_4.jpeg)

in practice as  $q_{\theta}$  is an ANN, the Kingma local reparameterization trick is used to make the whole expression differentiable

![](_page_22_Picture_6.jpeg)

#### $\theta^* = \arg\min \mathsf{KL}[q_{\theta}(w \mid D) \parallel p(w \mid D)]$

we have another integral here, but now q is more tractable and we can approximated it via MC sampling

with  $w^{(i)}$  samples sampled from  $q_{\theta}(w \mid D)$ 

<u>Blundell et al., arXiv:1505.05424</u>

![](_page_22_Picture_11.jpeg)

### **BAYESIAN-DGCNN**

![](_page_23_Figure_1.jpeg)

- better classification performance wrt the point DGCNN
- class probabilities better aligned with physics expectations

![](_page_23_Figure_5.jpeg)

all bayesian layers (EdgeConv, MLP, etc.), w/ gaussian priors (uncorrelated between layers and neurons)

![](_page_23_Figure_8.jpeg)

![](_page_23_Picture_9.jpeg)

### **BAYESIAN-DGCNN**

ROC for  $\tau \rightarrow \pi \pi^0 v$  vs all other channels

![](_page_24_Figure_2.jpeg)

ROC for  $\tau \rightarrow \pi \pi \pi \nu$  vs all other channels

![](_page_24_Figure_4.jpeg)

![](_page_24_Figure_5.jpeg)

![](_page_24_Picture_6.jpeg)

![](_page_24_Picture_7.jpeg)

### **BAYESIAN-DGCNN**

![](_page_25_Figure_1.jpeg)

B-DGCNN:10 samples per prediction no threshold on minimum confidence

B-DGCNN:10 samples per prediction minimum threshold on confidence 0.7

| Number of    | Minimum    | Events     | Test A         |
|--------------|------------|------------|----------------|
| Samples      | Confidence | Considered |                |
| 1<br>3<br>10 | 0.0        | 100 %      | 0.<br>0.<br>0. |
| 3            | 0.5        | 94.83 %    | 0.             |
|              | 0.7        | 80.33 %    | 0.             |
|              | 0.9        | 62.27 %    | 0.             |
| 10           | 0.5        | 94.72 %    | 0.9            |
|              | 0.7        | 79.82 %    | 0.9            |
|              | 0.9        | 60.52 %    | 0.9            |

![](_page_25_Picture_5.jpeg)

![](_page_25_Picture_6.jpeg)

### JET CONSTITUENTS ID

- DGCNN and dual-readout calorimeter high granularity can be exploited for object (particle) detection inside taus and jets
  - a proto-step for a particle flow algorithms
  - can be implemented with a similar approach as in segmentation tasks (eg pixel/node/fiber-level classification)
- DenseNet like modification of the DGCNN architecture for a segmentation task:

![](_page_26_Figure_5.jpeg)

- identify the particle associated to the larger energy deposit in each fibre
- label each fibre by extrapolating Monte Carlo truth particles from production to the DRC into the IDEA magnetic
- redict the label associated to each fibre train the DGCN
- Initial study: ເພາະອີບວint DGCNN only

![](_page_26_Figure_10.jpeg)

![](_page_26_Figure_15.jpeg)

![](_page_26_Figure_16.jpeg)

![](_page_26_Picture_17.jpeg)

### **RESULTS SEGMENTATION**

Two nice examples:  $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{0} \nu_{\tau} \rightarrow \pi^{\pm} \gamma \gamma \nu_{\tau}$ 

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

#### tau visibile energy reconstructed using:

- DRC for photons

ruth for other particles

![](_page_27_Picture_7.jpeg)

![](_page_27_Picture_8.jpeg)

## **RESULTS SEGMENTATION**

#### Two "less nice" results:

ex 1  $\tau \rightarrow e \nu_e \nu_\tau$ 

![](_page_28_Figure_3.jpeg)

#### **Ground Truth**

![](_page_28_Figure_5.jpeg)

ex 2

 $\tau \to \pi \pi^0 \nu_\tau \to \pi \gamma \gamma \nu_\tau$ 

w/ overlapping photons

![](_page_28_Figure_9.jpeg)

![](_page_28_Figure_10.jpeg)

#### Reconstructed

![](_page_28_Figure_12.jpeg)

![](_page_28_Picture_13.jpeg)

### **ONGOING DEVELOPMENTS**

- improve jet constituents ID by moving from DGCNN segmentation to Graph-Transformer object detection
- hybrid architecture: GNN → high-level representation → Transformed encoder/decoder → bounding box predictions
  - GNN encode the graph for the transformed architecture and extracts compact representation of the global graph structure
  - the transformer encoder process this data to produce an embedding context representing the whole graph
  - this embedding is passed to a transformer decoder that takes as input a small fixed of learned positional embeddings (object queries) and attends to the encoder output
  - the self-attention and the encoder-decoder attention over the embedding and the object queries allows the model to analyse all objects together using pair-wise relations between them, and to independently decode it into box coordinates and class labels by a FFN head
  - the FFN head is a shared MLP that predict class and bounding box for each object
- results will be ready in time for the fall meetings/conferences ...

![](_page_29_Figure_10.jpeg)

![](_page_29_Figure_11.jpeg)

![](_page_29_Picture_12.jpeg)