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Radiography vs Muography
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Outline

1. Some physics

2. How-to

3. A few selected applications

Disclaimer:
● Choice of sub-topics is very biased, not representative at 

all of the variety of activities in this area
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1. Some physics
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What is a muon (m)?

● One of the 3 charged leptons

● Unstable but long-lived

● ~200x heavier than the electron

● Leptons don't feel the strong nuclear 
force → no destructive interaction 
with the nuclei in matter

● Electromagnetic interactions depend 
inversely on the mass → muons in 
matter ionize less, are deflected 
less, and shower less than electrons Image source: wikipedia
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An old mystery
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„Who ordered that?“ (I. Rabi)
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Cosmic rays: how it all began

● Early 1900s: hypothesis that there is a 
natural background of ionizing radiation 
that discharges all the electroscopes

● People believed it was mostly due to 
radioactive rocks

● 1909: Theodor Wulf used Tour Eiffel to 
measure this background at different 
heights; surprisingly, he reported that it 
increases with the altitude, but 
measurements were not so precise and 
he was met with skepticism

● 1911-12: Victor Hess improved the 
instrument and used a balloon to study 
the phenomenon between 1000 and 
5000 m over sea level

When the device is charged, 
the sheets move apart.

Ionization of the gas leads to a 
discharge, and the sheets move 

towards each other.
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Primary and secondary cosmic rays

Picture from here

The number of charged particles increases as the cascade 
progresses, but eventually most of them are absorbed

Picture from Science News

http://hyperphysics.phy-astr.gsu.edu/hbase/astro/astcon.html
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Secondary cosmic rays
in the atmosphere

● Primary CRs (mostly protons) entering the atmosphere collide 
mostly with Oxygen and Nitrogen, producing a shower of particles

● Most CR collisions happen between 15 and 16 km above sea 
level; the rest of the atmosphere absorbs most of the secondaries 
through nuclear or EM interactions; most muons pass through

● Rate at sea level: ~100 Hz/m2 (~1 m/second through your thumb)
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At ground level, the 
visible flux is 

dominated by muons

Source: Particle Data Group

All curves are for E>1 GeV;
points are experimental 
measurements for negative muons



11Plot by Marwa Al Moussawi, using the CRY cosmic-ray generator

Spectrum at sea level

Momentum (MeV)

Vertical intensity
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Unstable but long-lived

● Muons decay into electrons and 
neutrinos; process mediated by the 
weak interaction, hence relatively slow

● Lifetime at rest: t
0
=2.2 ms

● But from the point of view of an 
observer in a different rest frame, time 
dilates: t = gt

0 
~ (P/mc)t

0

● Mass is 105 MeV/c2, and most muons 
from cosmic rays have momenta of 
several GeV/c

● L = vt = bcgt
0

● The average pathlength is thus longer 
than the thickness of the atmosphere

Figure from 
https://digitash.com/science/physics/ho
w-neutrinos-are-formed-and-detected-

quantum-mechanics/
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Angular distribution

From Peter Grieder's book 
Cosmic rays at Earth, Elsevier 2001

This is an approximation, and n~2 works pretty well; 
but it depends on energy, latitude, altitude, depth, …

From J.-W. Lin et al., Measurement of angular 
distribution of cosmic-ray muon fluence rate, NIM A 

619 (2010) 24

 Large difference in 
statistics between vertical 
and horizontal telescopes
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2. How-to
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Absorption method

● Just like normal radiography, with m instead of X-rays
● Absorption is almost entirely due to energy loss by ionization
● We can see the 2D shadow of a large object, with denser 

regions absorbing larger fractions of the muon flux
● Observable: opacity, i.e. integral of the density along a line of 

sight, measured as ratio of the flux with respect to free sky
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Stopping power

At typical cosmic energies, muons loose 
~2 MeV/cm in water (r=1 g/cm3)

Source: Particle Data Group
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Scattering method
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http://cms.cern/content/homeland-security
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● Deflection distribution follows Rutherford's law in the tails (single 
hard scattering) and is ~ Gaussian in the bulk (multiple scattering)
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● X
0
 is the radiation length, and it depends on the atomic number

http://www.physics.iitm.ac.in/~sercehep2013/track2_Gagan_Mohanty.pdf%20
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Typical use cases for scattering

● Most use cases are related to identification of high-Z materials 
(e.g., spent nuclear reactor fuel, smuggled fissile material, etc.)

● Invented in 2003, already attracted interest of the private sector 
and of the IAEA (see upcoming IAEA-TECDOC-2012)
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Absorption vs scattering

● Opacity measurement
● Sensitive to r
● Observable: deficit with respect 

to free sky
● Intrinsically 2D, can get 3D by 

using multiple points of view
● No limit on size of target

● Deflection measurement
● Sensitive to Z and r
● Observable: RMS of deflection 
● (can be combined with absorption)
● Intrinsically 3D
● Size of target limited: must fit 

between the two detectors
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What to use for what

(Table to appear in IAEA-TECDOC-2012)

Absorption is sensitive to differences in r, 
scattering is sensitive to differences in l=r/X

0
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What to use for what

Material Thickness  (°) Pabsorption

Air 100 m 0.094 0.78%

Lead 10 cm 1.01 2.9%

Water 1 m 0.35 4.2%

Ground 100 m 99%

Scattering Absorption
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Scintillators

Y1

X1

Y2

X2

Illustration by S.Procureur

● Solid plastic scintillators, coupled to 
photomultipliers

● Strengths:
✔ Cheap
✔ Robust
✔ Quick signal → can use time-of-flight 

to reject backgrounds
● Weaknesses:

✗ Poor space resolution
✗ Photomultipliers response may 

depend on temperature (issue if 
operating outdoors for months)
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Nuclear emulsions

● Photographic plates
● Strengths:

✔ Excellent resolution
✔ No need for power supply

● Weaknesses:
✗ Fragile
✗ No real-time information
✗ No background rejection
✗ Dedicated analysis 

infrastructure (scanners)

Some very impactful muography teams 
(e.g.: Bern, Salerno/Naples, Nagoya) 
previously belonged to the OPERA n 
experiment, based on this technique
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Gaseous detectors
● Huge variety of techniques are in 

use in muography (drift tubes, 
RPC, MWPC, MicroMegas, …), 
with very different complexity, cost, 
robustness

● General strengths:
✔ Very good space resolution
✔ Quick signal → can use time-of-flight 

to reject backgrounds
● General weaknesses:

✗ Logistics (gas bottles), leakages, 
security issues

✗ Stability

Example: RPC, illustration by Sophie 
Wuyckens

Gain variations of 
CEA/ScanPyramid 
MicroMegas detector, with 
increasingly complex gain 
corrections:
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More exotic choices
● Silicon detectors

● Lot of expertise in HEP with Si pixel and 
microstrip detectors; <100 mm resolution

● A Fermilab team used CMS microstrip modules 
in a demonstrator for cargo scanners

● Excellent option for extraterrestrial applications 
(compact payload, and rad-hard)

● Problem: very expensive (CMS microstrips: 
~1000 euros per module)

● Cherenkov light in air
● ASTRI-Horn, a prototype for the CTA, located 

on Mt. Etna's slopes (Italy)
● "Parasitic" usage for muography; but location 

not optimal (5 km from target), and not portable
● Momentum threshold (20 GeV) limits statistics
● On the other hand, practically 0 background
● Movable/cheaper version has been proposed

Im
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O.Catalano, M.Del Santo, T.Mineo, G.Cusumano, 
M.C.Maccarrone, G.Pareschi, NIM A 807 (2016) 5

Simulation

CMS Si strip module



27

3. applications
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First known application of 
muography (1955)

● Used to measure ice thickness above a tunnel in Australia

● No directional information, just a Geiger counter on rails

Im
age so urce: h ttps://w

w
w

.hep.u cl.ac.uk/ cream
te a/
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Fast-forward by 65 years

● Recent incarnation of the same idea was used recently to 
survey a railway tunnel built in 1862 in the UK

● Movable detector on a rail, 30' at each detector position
● Found an unknown void (see arrow), interpreted as a long-

forgotten shaft. Railway authorities then disclosed their 
pre-existing concerns of a hidden void in that area

L. T
hom

pson et al, P
hys . R

ev. 
R

esearc h 2, 023 017 (202 0)
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First application of muography to 
archaeology
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Alvarez's result: no hidden chamber
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Fast-forward by 50 years

Discovery of a big void in Khufu’s Pyramid by 
observation of cosmic-ray muons

Morishima et al., Nature 552 (2017) 386

Alvarez chose the wrong pyramid...

(But would have he been able to spot this void?)
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Khufu's Great Pyramid
(ScanPyramids mission)

Morishima et al., Nature 552 (2017) 386

Nagoya
(emulsions, 

indoors)

KEK
(scintillators, 

indoors)

CEA
(MicroMegas, 

outdoors)

Coherent results from 3 very different detectors 
(independent analysis) and from different points 
of view; position from triangulation
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Another pyramid

Pyramid of the Sun at Teotihuacan, Mexico
3rd largest in the world, built 1800 years ago by the Aztecs

Picture from: L. Melesio, The pyramid detectives, Phys. World, 27 (12) (2014), p. 24
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Pyramid of the Sun

● Had to use a deep underground chamber, crawling through a tunnel 
so narrow that the detector (1.5 m3, six layers of multi-wire chambers) 
had to be dismantled and then reassembled inside!

● >10 years of data taking, yet unpublished (apart from proceedings)
● Preliminary analysis found 20% density difference between North and 

South faces; perhaps hinting at risk of collapse on the southern side

A
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10% of the data:
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Portable detectors

● Previous example is just one of many archaeology or 
geoscience use cases where the optimal location of the 
detector is hard to access and in a confined space

● A few groups are developing portable muon telescopes 
whose key design considerations include compact size, 
light weight and autonomous operation

From L. Bonechi, R. D'Alessandro, A.G., arXiv:1906.03934, Rev. Phys. 5 (2020) 100038
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Examples

Left: from K. Chaiwongkhot et al., IEEE Trans. Nucl. Sci., 65 (2018), p. 2316
Right: from G. Baccani et al., Universe 5(1) (2019), p. 34

Kyushu detector: MIMA detector (Florence):

Scintillating fibers 
(bundled)

Scintillating bars
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The CP3 mini-RPC muoscope

Superimposed 
detector layers, at 
90° of each other

Tubes for gas filling; 
only needed once, 
then the muoscope 

is ready to go
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First prototype

● Portability
● Sealed; particular care in making 

gas-tight boxes (10-9 mbar l/s)
● Small (active area: 16x16 cm2)
● Light, robust

● Versatile: modular geometry
● Cheap and easy to assemble
● First full prototype built entirely @ 

CP3 with UGent's support
● 4 planes (x-y, x-y)
● Eventually we intend to increase 

number of channels
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Mountains and volcanoes
● Pioneered since the 90's by Nagamine's team in Japan, intense 

activity in recent years in Japan, Italy, France, Colombia
● Both "static" and "time-series" studies are potentially useful for 

volcanology, the latter also for civil protection

Satsuma-Iwojima volcano, Japan, 2013 eruption
H.Tanaka, T.Kusagaya, H.Shinohara, Nature Comm.5 (2014) 3381
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A "standard candle": Puy de Dôme

Dormant volcano in France, inner composition 
very well known by other means.

Here shown: two months of muon data

From: Carloganu & Saracino, Physics Today dec.2012

TOMUVOL telescope
(RPC detectors)
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A "standard candle": Puy de Dôme

Nota bene!
The deepest (and most interesting) part of 

the volcano looks like it's glowing in muons...

TOMUVOL telescope
(RPC detectors)
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What are those backgrounds?

From L. Bonechi, R. D'Alessandro, A.G., arXiv:1906.03934, Rev. Phys. 5 (2020) 100038

Fakes Combinatorial

Soft muons Backward muons
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A joint experiment
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90 MU-RAY TOMUVOL

● Simultaneous measurement with two detectors in two different places
● MU-RAY: 3 x-y layers of scintillating bars; 3 cm steel plate (muon P 

threshold: 70 MeV) as absorber for fakes
● TOMUVOL: 4 x-y layers of RPC (less combinatorics); no absorber
● Compatible results  most background is actually muons
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What are those backgrounds?

From L. Bonechi, R. D'Alessandro, A.G., arXiv:1906.03934, Rev. Phys. 5 (2020) 100038

Fakes Combinatorial

Soft muons Backward muons
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The MURAVES experiment
● MU(on)RA(diography) of 

VES(uvius)
● Vesuvius: active volcano 

near Naples (Italy)
● Eruptions are infrequent 

(last one in 1944) but 
potentially very dangerous

● Wiped out Pompeii and 
Hercolaneum in 79 AD

● Today, > 0.5M people live 
in its "red zone", i.e., need 
to be evacuated in case of 
eruption

● MURAVES: successor 
of MU-RAY project

● Consortium of INGV, 
INFN, Naples, Florence, 
and since 2019 also 
CP3 and UGent
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One of the MURAVES telescopes

P
icture by  S

.W
uycke ns, July 2 019

● 3 telescopes (was 1 in MU-RAY)
● 4 x-y layers (3 in MU-RAY) of scintillating bars with triangular 

section, coupled to SiPM
● Lead wall, 60 cm thick (recycled from OPERA experiment), 

corresponding to a ~1 GeV cut-off
● Also emphasis on Time-of-Flight against backward muons
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The MURAVES experiment

● Of the 3 telescopes, at any point in time 2 will point towards 
Vesuvius and one in the opposite direction

● Transmission probability (vs q,f) is defined with respect to the 
free-sky flux; measured with the backward-pointing telescope

● The 3 telescopes alternate in occupying the backward 
position, such that detector systematics cancel out

MURAVES Collaboration, arXiv:2202.12000 [physics.ins-det], 
J. Adv, Instr. Sci., vol. 2022, no. 1, Sep. 2022. 
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First public data

Simulation

51 days of 
real data

MURAVES Collaboration, arXiv:2202.12000 [physics.ins-det], 
J. Adv, Instr. Sci., vol. 2022, no. 1, Sep. 2022. 



50

Industrial applications

Slide by M. Lagrange with material from P. Martinez et al., Phil. Trans. R. Soc. A.377 (2018) 0054
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Conclusion

● Muography is a booming 
research direction, with several 
potential applications

● Some applications are more 
mature than others (e.g. 
volcanology, archaeology)

● Large potential for new teams to 
join (volcanoes and cultural 
heritage sites are ubiquitous...)

● Plenty of room for new ideas
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Some reading material

● "Atmospheric muons as an imaging tool" / 
Bonechi, D'Alessandro, Giammanco, Reviews 
in Physics 5 (2020) 100038 [link]

● "Muon tomography in geoscientific research – a 
guide to best practice" / Lechmann et al., Earth-
Science Reviews 222 (2021) 103842 [link]

● "Muography: Exploring Earth's Subsurface with 
Elementary Particles" / Wiley Geophysical 
Monograph Series (2022) [link]

● "Non-Destructive Testing using Muon Imaging" / 
IAEA-TECDOC-2012 (2022) [link]

https://doi.org/10.1016/j.revip.2020.100038
https://doi.org/10.1016/j.earscirev.2021.103842
https://www.wiley.com/en-us/Muography:+Exploring+Earth's+Subsurface+with+Elementary+Particles-p-9781119723028
https://www.iaea.org/publications/15182/muon-imaging
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Thanks for your attention!Thanks for your attention!
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Detector comparison

From L. Bonechi, R. D'Alessandro, A.G., arXiv:1906.03934, Rev. Phys. 5 (2020) 100038



55

1 m of rock ~ 3 m water equivalent

Source: Particle Data Group

Plateau: background from up-going neutrinos; 
not relevant here

1 km of rock means a drop of 2 
orders of magnitude in muon flux
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Most geoprospecting methods are non-linear 
inversion problems: solutions wildly degenerate, 
need strong constraints to converge, different 
assumptions lead to qualitatively different results

Muography: highly directional, breaks 
degeneracy of the other methods

Combination with
"standard methods"

Formula from Anne Barnoud



57

Checkerboard test

Simulated density 
pattern:

Seen from gravimetric inversion Seen from muographic inversion

Red: high density
Blue: low density

Study from Anne Barnoud
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