Compton Scattering Monochromatic Tunable X-ray Source based on X-band Multi-bunch Linac at the University of Tokyo

Fumito SAKAMOTO, Mitsuru UESAKA, Yoshihiro TANIGUCHI, Takuya NATSUI, Tomohiko YAMAMOTO, Eiko HASHIMOTO, Ki Woo LEE, Junji URAKAWA¹, Mitsuhiro YOSHIDA¹, Shigeki FUKUDA¹, Toshiyasu HIGO¹, Namio KANEKO², Hiroyuki NOSE², Hisaharu SAKAE², Naoki NAKAMURA³ and Masashi YAMAMOTO³

Nuclear Professional School, the University of Tokyo 1:High Energy Accelerator Research Organization

2:IHI

3:Accuthera

Contents

- Ompton scattering monochromatic X-ray source based on X-band linac at the University of Tokyo.
- Experimental results and present status of the X-ray source.
 - Beam generation by X-band linac.
 - Laser system and its properties.
 - X-ray generation via Compton scattering.
 - Upgrade of X-band thermionic RF-gun.
- Summary and future works.

Contents

- Ompton scattering monochromatic X-ray source based on X-band linac at the University of Tokyo.
- Experimental results and present status of the X-ray source.
 - Beam generation by X-band linac.
 - Laser system and its properties.
 - X-ray generation via Compton scattering.
 - Upgrade of X-band thermionic RF-gun.
- Summary and future works.

Example on performance of Linac/Laser Compton X-ray source for medical and industrial applications

Laboratory	Electron Energy	Charge	Laser	X-ray energy and intensity	Application
AIST[1] (Operating)	20-42 MeV (S-band)	0.8 nC Single bunch (Multi bunch)	800 nm, 140 mJ, (Ti:Sapphire, 100 fs) (Multi pulse)	10-40 keV 1.0E+7 photons/s (10E+9 photons/s by multi)	Medical
Waseda Univ. [2] (Operating)	4.6 MeV (RF-gun) (S-band)	350 pC Single bunch	1047 nm, 36 mJ (Nd:YLF, 10 ps)	0.25~0.5 keV 3.28E+4 photons/pulse	Radiation chemistry
LLNL[3] (Operating)	120 MeV (S-band)	250 pC Single bunch	800 nm, 500 mJ (Ti:Sapphire, fs)	40~80 keV 1.0E+7 photons/s	Heavy atom imaging
KEK[4] (Operating)	43 MeV (S-band)	2 nC ×100 Multi bunch	1064 nm, 2 kW (Nd:YAG, Super Cavity)	33 keV 1.0E+8~9 photons/s	Medical
U-Tokyo[5] (Constructing)	30 MeV (X-band)	20 pC×10000 Multi bunch	532 nm, 1.4 J, (Nd:YAG, 10 ns)	20-40 keV 1.0E+8~9 photons/s (By laser pulse circulation)	Medical

We are proposing "compact and high intensity Compton source" by adopting X-band(11.424 GHz) multi bunch linac. [1]R. Kuroda et. al., Compton Sources for X/gamma Rays, 2008

[2]A. Masuda et. al., Proc of Particle Accelerator Society Japan, 2007

[3]W. J. Brown et. al., PRL-ST 7,060702(2004)

[4]M. Fukuda et. al., Proc of Particle Accelerator Society Japan, 2007

[5]M. Uesaka et. al., NIM B, 261, (2007) 867-870

Compton scattering X-ray source at the University of Tokyo

5

Properties of X-ray

Design beam parameters

Electron beam: 30 MeV, 20 pC/bunch, 10⁴ bunches/RF pulse(1µs), 10 pps

Laser: 1064 nm, 2.0 J, 10 ns, 10 pps

X-ray: 21.9 keV, 9.9*10⁸ photons/s (Full band width)

532 nm, 1.4 J, 10 ns, 10 pps

X-ray: 42.9 keV, 4.7*10⁸ photons/s (Full band width)

Multi-collision scheme

Single-collision scheme (Ultra-short X-ray)

Collision between ultra-short (ps \sim fs) pulses.

Multi-collision scheme (High intensity X-ray)

Collision between ~ns laser pulse and multi-bunch electron beam

Time structure and beam size dependency of X-ray

$$N = \sigma_{cross} L = \sigma_{cross} N_e N_l \frac{1}{2\pi} \frac{1}{\sqrt{\sigma_{xe}^2 + \sigma_{xl}^2}} \frac{1}{\sqrt{\sigma_{ye}^2 + \sigma_{yl}^2}}$$

$$\sigma_{me} = \sqrt{\varepsilon_m \beta_m(s) + \left(\frac{\Delta P}{P} \eta_m(s)\right)}$$

$$\sigma_l(s) = \sigma_{0l} \sqrt{1 + \left(\frac{s^2}{s_{0l}}\right)^2}$$

$$\sigma_c(s) = \sigma_{0l} \sqrt{1 + \left(\frac{s^2}{s_{0l}}\right)^2}$$

$$\sigma_l(s) = \sigma_{0l} \sqrt{1 + \left(\frac{s^2}{s_{0l}}\right)^2}$$

Energy : 30 MeV

Emittance : 10 πmm-mrad

Charge : 20 pC/bunch,

RF pulse width: 1 µs Laser energy: 1.4 J Wavelength: 532 nm Pulse length: 10 ns

 σ_{cross} : Total cross section given by Klein-Nishina's formula

Time structure of X-ray

Laser size dependency for electron beam100 µm

Laser pulse collide with ~100 electron bunch.

Monochromatically of X-ray by collimator

Energy spread of 10 % can be obtained if the collimate angle set to 6 mrad.

Contents

- Compton scattering monochromatic X-ray source based on X-band linac at the University of Tokyo.
- Experimental results and present status of the X-ray source.
 - Beam generation by X-band linac.
 - Laser system and its properties.
 - X-ray generation via Compton scattering.
 - Upgrade of X-band thermionic RF-gun.
- Summary and future works.

X-band linac system (Electron beam source)

Laser optics for Compton scattering experiment

12

Measurement of laser properties

Laser parameter

Nd:YAG 532 nm (2nd harmonic)

Pulse energy: 1.4 J

Pulse duration: 10 ns (FWHM)

Position, spot size, energy stability: <5%

M-square: 1.6 for horizontal, 1.8 for vertical.

Beam profile at collision point.

Spot size

Vertical :150 μm (rms)

Horizontal:300 µm (rms)

Experimental setup for X-ray generation via Compton scattering

1st experiments on electron acceleration and X-ray generation

Electron (22 MeV) • Laser (800 mJ) Collision and X-ray generation

However, the electron energy (22 MeV) is lower than the design (30 MeV) and X-ray intensity is quite low.

What is the issue?

Thermionic cathode RF-gun.

Issue at thermionic X-band RF-gun

detune the cavity resonance.

Typical waveform before and after high-power feeding

Evaluation of thermal diffusion at tungsten spring surface by RF pulse

One-dimensional thermal diffusion equation.

$$\alpha \rho \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial y^2} + \frac{H_{0x}^2}{\sigma \delta^2} \exp\left(\frac{2y}{\delta}\right)$$

 α : specific heat, ρ : density, σ : elec. conductance, δ : skin depth, k: thermal conductivity, y: depth, T: temperature, t: time, H: surface magnetic field

2MW input power produces temperature rise of ~630°C on tungsten surface. However, melting point of tungsten is higher than 600°C (about 3000°C in vacuum.).

Calculated temp. rise on W spring surface as a function of time

What happens ??

Discussion: Change in W crystal structure induced by temp. rise

Upgrade of RF-gun

RF shielding at co-axial structure \rightarrow "choke" structure. Support of thermionic cathode → W spring.

Magnetic field is reduced below 10-6 at the W spring.

Summary and next works

Summary

We are developing "compact and high-intensity" Compton scattering monochromatic X-ray source for medical application at the University of Tokyo.

- X-band multi-bunch linac and Nd:YAG laser are adopted to realize compact and high stable X-ray generation.
- Whole components include beam line and laser system are installed.
- Upgrade of the X-band thermionic RF-gun with choke structure is underway.

Next works

- High-power experiment of the RF-gun. (Test of the choke structure)
 Now, the experiment is under way.
- Beam generation, acceleration and X-ray generation experiments.