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why analyze attenuation data:
Thomson Source example

|0e9 photon per second
|0 pulses |0 ps each

v

for conventional spectroscopy you need at most
| photon per pulse without filtering the beam
and the machine working at full power

with a collimator of 50 um of diameter
the distance required is ~ 170 m
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Our Problem:
spectrum estimation from attenuation measurements

attenuation measurements - monochromatic beam
> E)t Eq)t

N (t) = f §(Ep)Noe M B R = NyeH(ED
0

polychromatic beam

T(t) = fn " X(E)e MBI

suppose to know exactly ,(L(E) and {
and have an experimental measure of T(t)

» is it possible to calculate X' (F) ?
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Our Problem:
discrete formulation

polychromatic beam compact
o0 linear operator:
T(t) = fﬂ X(E)e MPIE its inverse is not
continuous

discretization

i =1...m measurements
j=1...n energy bins

T . AX It turns out in a
— linear system
which is highly
AcecR™" T e R"e X € R" ill-conditioned
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discrete formulation

polychromatic beam

T(t) = /D T X(E)e MPrE
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i =1...m measurements
j=1...n energy bins

T'=AX

AcecR™" T elR"e X € R"

linear operator:
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an example: direct reconstruction

in attenuation data is present only round-off noise

Bremsstrahlung — 80 kV W — 1mm Al inherent filtration 2 U
0.03r
M | * reference spectrum c On X
* * ]
* *
0.025 X *
* *
—_ * *; direct numerical inversion — roundoff errors
S 0.02} * * 8r
S * * * reference
3 *; reconstructed
© * 6
€ 0.015} * *
o *
2 * * 4l
= » y g
© L * 9
° 0.01 * " 3 of
* * i
[0
* * o
0.005} * * & 0
* 2
*
o
: * 2 -2f
0 M . L ; %
0 20 40 60 80 100 120 =
energy [KeV] -4r
-6}
° ° ° _8 1 1 1 1 1 J
the propagation of noise is 0 20 40 60 80 100 120
energy [KeV]

strong enough to completely
destroy any information about X L A_l T

the original spectrum
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ill-conditioning:
what does it mean!?

* the system shows instability due to extreme sensitivity
to the noise

* there is a serious dump of the information of the initial
physical state during the evolution of the system
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ill-conditioning:
what can we do

* the system shows instability due to extreme sensitivity
to the noise

* there is a serious dump of the information of the initial
physical state during the evolution of the system

¢ ill-conditioning does not mean that NO information
can be extracted but simply that STANDARD
METHODS in numerical linear algebra cannot be
applied in a straightforward way

e we need some A PRIORI or EXTRA information
about the solution we are looking for in order to
compute a useful APPROXIMATION to the exact,

unknown solution
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Our Problem:
abstract representation

let us formulate our problem in a slightly more abstract way,
consider a compact linear operator

JC which acts between two Hilbert Spaces g and JF
K:F—>¢G

now the problem can be represented as

g=~Kf

where JC is the model

g € G the measurements

f € F the uknwown solution
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noise in the measurements

moreover, we know the attenuation curve -
only through measurements gEﬂ:p g T 5

with 5 the experimental error

0
even imposing ——  to be small
g
the solution obtained as femp — ]C_lgemp

will be compromised by the AF]] < cond(K) |Agl|
noise propagation Hf” — HQH
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Regularization Operator:

definition
K:F — g given a compact operator and a real,
(9, gezp) € |0, 00) non negative parameter
consider the R _ g F
continuous operator o e —

the family of operators {Rﬂf}
is called a regularized operator for ]CT g —- F

and has the following properties

lim sup{||Ragexp — ]CTgH} =0

0—0
lim sup{a(d, gepz) } = 0
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Tikhonov Regularization:
a penalty method

the basic idea of Tikhonov-type regularization is to minimize the
residual and, at the same time, to impose a bound on the size of
the computed solution

Xy = argminy { || Teap — AX||3 + XX |3}
A€ 10,00)

there are two equivalent formulation that can be useful to
compute the approximation to the solution

( f )X_ ( T%xp )H and (A'A+NNX = A'T.yp.
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TSVD Truncated Singular Value Decomposition
a projection method

the starting point is the Singular Value Decomposition of the linear
system which is defined as:

A=UXV? AcIR™"™ with m<n

[0 1] UeR™M™YXcR™", and V€ R"™"
On L
=19 ... 0 so that we can express the approximation to the
: . solution in this way:
i 0 ce 0 1 t r t t
exp — — U; = — U4
, k) , k) 0;
1=1 1=1
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TSVD Truncated Singular Value Decomposition
a projection method

1=1

“exact” term contrlbutlon
no divergence problem

noise contrlbutlon is
likely to diverge when i

the idea is to truncate the sum when the becomes big; the

singular values become too small singular values decreases
compared to the level of noise, the while noise components
solution is simply: does not

t
X = E ? p v; it’s just the projection over the

, first k singular vectors
— O
1=
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Maximum Likelihood method:
statistical iterative algorithm

* iterative algorithm: request an input spectrum and a
stopping rule

e cach approximation X ¥ to the spectrum is guaranteed
to be non-negative

* the mean intensity of AX¥is conserved each iteration

. simple implementation

kaz+1 — Xﬁfn

t 1T
Zm A nm Zn" Amn’XEJ
Do Alnm
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Maximum Likelihood method:
the case of Poisson Noise

* iterative algorithm: request an input spectrum and a
stopping rule

e cach approximation X ¥ to the spectrum is guaranteed
to be non-negative

* the mean intensity of AX¥is conserved each iteration

. simple implementation

kaz+1 — Xﬁfn

t 1T
Zm A nm Zn" Amn’XEJ

fn = Zm At

in the case of Poisson Noise
the Maximum Likelihood Method
looks like this
[Richardson-Lucy]
or

[Expectation Maximization]
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Expectation Maximization algorithm:
a priori spectrum and stopping rule

input distribution

FLAT: we are not imposing any
constraint to the spectral
distribution

SHAPED: for example we know
that there are no photons above a
certain energy

discrepancy principle

HTmeas — AXEHQ =0

we can’t expect to have a better

approximation to the attenuation
curve from computed spectra with
respect to the direct measurements

Tmeas = legget T €

d:HE“z

when 0(k) < d we stop the
iterations
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Regularization in a picture

All problems

Well posed

Rank deficient

we need some EXTRA knowledge, for example form
the physics that governs the experiment, to choose

some constrains or to project over a good subspace
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Simulations & Figure Of Merit

SIMULATED EXPERIMENT:
80 kV -W anode with |mm Al inherent filtration
the attenuation curve is computed in Al
the curve is perturbed with three different level of noise
comparison of different methods for spectrum estimation

Bremsstrahlung — 80 kV W — 1mm Al inherent filtration
0.031

ﬁ | * reference spectrum
*

0.025F

as we are interested in the
SHAPE of the spectrum we

; . choose an L2 distance

0.02

0.015f

relative fluence [# fotoni]

criterion to study
convergence properties of
different algorithms

0 — L
0 20 40

60 80 100 120
energy [KeV]
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Simulations & FOM:
TSVD and Tikhonov

relative fluence [# fotoni]
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Simulations & FOM:

Expectation Maxmization
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Experimental Validation:
set up

experimental set-up

X Ray
Source

transmission curve

, 22 measurements Al
metal foils

holder

transmission curve- ionization chamber
W anode - 40 kV — 2.5 mm Al inherent filtration

—_

1
reference

Lead
collimator

o
©

- data

o
e

o
\I

o
o

o
(4]

©
N

normalized transmission

o
w

detector

o
(S}

o
—

* background radiation
o Scatte rin g 0 2000 2000 6000 8000 10000

um Al

o
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Experimental Validation:
40 kV -W anode - 2.5 mm Al inherent filtration

normalized dose per energy bin

normalized dose per energy bin
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Experimental Validation:
40 kV -W anode - 2.5 mm Al inherent filtration

EM reconstruction: no a priori information TSVD reconstruction — ionization chamber measurements — W 40 kV
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Experimental Validation:
10,15,20 kV - WV anode - 0.5 mm Al filtration

uFocus — W 10 KeV - EM+discrepancy principle - flat prior uFocus — W 15 KeV - 0.5 mm Al inherent filtration — Flat prior
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Thomson Source Simulations:
Expectation Maximization Algorithm

raltive fluence [# photons]

Thomson Scpectrum simulation EM mesthod

Thomson Scpectrum simulation EM mesthod
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Lasers and Optics

Thomson backscattering X-rays
from ultra-relativistic electron bunches
and temporally shaped laser pulses
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Thomson Source Simulations:
Expectation Maximization Algorithm

Thomson Scpectrum simulation EM mesthod

Thomson Scpectrum simulation EM mesthod
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Thomson Source Simulations:
pollution study

fluenza relativa

analisi di possibile inquinamento dovuto a fluorescenza: Cu analisi di possibile inquinamento dovuto a fluorescenza: Pb
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Thomson Source Simulations:
pollution study

relative fluence

relative fluence

0.8

0.7p

Thomson Source simulations - EM - unexpected fluorescence radiation
T T

-6 - reconstructed
reference

Thomson Source simulations - EM - unexpected fluorescence radiation
T T

40
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at least in
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the line is
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CONCLUSIONS

e a2 COMPLETE METHOD for spectral estimation from attenuation
data analysis has been demonstrated both on SIMULATED and REAL
EXPERIMENTS for filtered Bremsstrahlung Xray radiation

SIMULATION STUDIES seems to show that Expectation
Maximization Algorithm can be useful in the characterization of a high
fluence, quasi-monochromatic Xray source as ICS Sources can be
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CONCLUSIONS

e a COMPLETE METHOD for spectral estimation from attenuation data
analysis has been demonstrated both on SIMULATED and REAL
XPERIMENTS for filtered Bremsstrahlung Xray radiation

e SIMULATION STUDIES seems to show that Expectation Maximization

Algorithm can be useful in the characterization of a high fluence, quasi-
monochromatic Xray source as |ICS Sources can be

WAITING FOR A REAL ICS MEASUREMENTS

* evaluation of Tikhonov-type / * a different approach to this
Regularization imposing flatness kind of indirect spectrometry
at the boundaries and using

different norms (L1) e for example DIFFRACTION
and COMPTON SCATTERING
e simulation study of different measurements can be a good
stopping rules for Expectation choice

Maximization Algorithm
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