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why analyze attenuation data: 
Thomson Source example

10e9 photon per second
10 pulses 10 ps each

for conventional spectroscopy you need at most 
1 photon per pulse without filtering the beam

and the machine working at full power

with a collimator of 50 um of diameter 
the distance required is ~ 170 m

Compton Sources for X/gamma Rays: Physics and Applications
Alghero 7-12 September 2008



Our Problem: 
spectrum estimation from attenuation measurements

attenuation measurements - monochromatic beam

polychromatic beam

suppose to know exactly  

is it possible to calculate

and
and have an experimental measure of

?
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polychromatic beam

measurements
energy bins

discretization

compact
linear operator:
its inverse is not 

continuous 

it turns out in a 
linear system 
which is highly 
ill-conditioned

Our Problem: 
discrete formulation
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an example: direct reconstruction
in attenuation data is present only round-off noise

the propagation of noise is 
strong enough to completely 

destroy any information about 
the original spectrum
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ill-conditioning: 
what does it mean?

• the system shows instability due to extreme sensitivity 
to the noise 

• there is a serious dump of the information of the initial 
physical state during the evolution of the system
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• ill-conditioning does not mean that NO information 
can be extracted but simply that STANDARD 

METHODS in numerical linear algebra cannot be 
applied in a straightforward way

• we need some A PRIORI or EXTRA information 
about the solution we are looking for in order to 
compute a useful APPROXIMATION to the exact, 

unknown solution

ill-conditioning: 
what can we do

• the system shows instability due to extreme sensitivity 
to the noise 

• there is a serious dump of the information of the initial 
physical state during the evolution of the system
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Our Problem: 
abstract representation

let us formulate our problem in a slightly more abstract way, 
consider a compact linear operator

which acts between two Hilbert Spaces and

now the problem can be represented as

where      is the model

the measurements

the uknwown solution
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moreover, we know the attenuation curve 
only through measurements

even imposing

with     the experimental error

to be small

the solution obtained as

will be compromised by the 
noise propagation

noise in the measurements
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Regularization Operator: 
definition

given a compact operator and a real, 
non negative parameter

consider the 
continuous operator 

the family of operators

is called a regularized operator for

and has the following properties
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Tikhonov Regularization:
 a penalty method

the basic idea of Tikhonov-type regularization is to minimize the 
residual and, at the same time, to impose a bound on the size of 

the computed solution

there are two equivalent formulation that can be useful to 
compute the approximation to the solution

and

Xλ = argminX

{
||Texp −AX||22 + λ2||X||22

}

min
∥∥∥∥

(
A
λ

)
X −

(
Texp

0

)∥∥∥∥ (AtA + λ2I)X = AtTexp.

λ ∈ [0,∞)
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TSVD Truncated Singular Value Decomposition 
a projection method

the starting point is the Singular Value Decomposition of the linear 
system which is defined as:

so that we can express the approximation to the 
solution in this way:
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



σ1

. . .
σn
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TSVD Truncated Singular Value Decomposition 
a projection method

“exact” term contribution
no divergence problem noise contribution: is 

likely to diverge when i 
becomes big; the 

singular values decreases 
while noise components 

does not

the idea is to truncate the sum when the 
singular values become too small 

compared to the level of noise, the 
solution is simply:

it’s just the projection over the 
first k singular vectors

A†Texp =
r∑

i=1

ut
iTexp
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Maximum Likelihood method:
statistical iterative algorithm

• iterative algorithm: request an input spectrum and a 
stopping rule

• each approximation         to the spectrum is guaranteed 
to be non-negative

• the mean intensity of         is conserved each iteration

• simple implementation

Compton Sources for X/gamma Rays: Physics and Applications
Alghero 7-12 September 2008



Maximum Likelihood method:
the case of Poisson Noise

• iterative algorithm: request an input spectrum and a 
stopping rule

• each approximation         to the spectrum is guaranteed 
to be non-negative

• the mean intensity of         is conserved each iteration

• simple implementation

in the case of Poisson Noise
the Maximum Likelihood Method

looks like this
[Richardson-Lucy]

or
[Expectation Maximization]
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when                  we stop the 
iterations

Expectation Maximization algorithm:
a priori spectrum and stopping rule

we can’t expect to have a better 
approximation to the attenuation 

curve from computed spectra with 
respect to the direct measurements

discrepancy principleinput distribution

FLAT: we are not imposing any 
constraint to the spectral 

distribution

SHAPED: for example we know 
that there are no photons above a 

certain energy

δ(k) ≤ d
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Regularization in a picture

we need some EXTRA knowledge, for example form 
the physics that governs the experiment, to choose 
some constrains or to project over a good subspace

2.2 Matrix Decompositions 11

All problems

Well posed

Rank deficient

Ill-posedPenalty/Tikhonov
TSVD

and
Hybrid

Figure 2.1: Types of regularization methods. The Tikhonov/penalty type meth-
ods create well-posed problems while the projection/subspace methods create rank-
deficient problems. On this background it is somewhat surprising that truncated
SVE and Tikhonov regularization can yield nearly identical results, see [64].

2.2 Matrix Decompositions

To analyze and solve the discrete ill-posed problems we use a number of matrix
decompositions. The most important decomposition used to analyze discrete ill-
posed problems is the singular value decomposition, the discrete analogue to the
singular value expansion. The discrete Picard condition is also introduced and an
example of the problems with a disturbed right hand side is presented.

Definition 2.1 (SVD) The singular value decomposition (SVD) of a matrix K ∈
Rm×n, (assuming m ≥ n) is

K = UΣVT , (2.7)

where U ∈ Rm×m, Σ ∈ Rm×n and V ∈ Rn×n. Furthermore both matrices of singular
vectors U (left singular vectors) and V (right singular vectors) are orthogonal with
orthonormal columns, that is, UT U = I and VT V = I. The singular value matrix
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Simulations & Figure Of Merit

SIMULATED EXPERIMENT: 
80 kV - W anode with 1mm Al inherent filtration

the attenuation curve is computed in Al
the curve is perturbed with three different level of noise
comparison of different methods for spectrum estimation
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Simulations & FOM:
 TSVD and Tikhonov

10!4 10!3 10!2 10!1 100 101 102
10!2

10!1

100

101

102

lambda

L2
 d

is
ta

nc
e

semiconvergence of Tikhonov ! Bremsstrahlung Spectra

 

 
 noise 1e!3

 noise 5e!3

 noise 1e!2

0 20 40 60 80 100 120
!0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

KeV

re
la

tiv
e 

flu
en

ce
 [#

 fo
to

ni
]

Tikhonov ! Bremsstrahlung  Spectrum! noise 10!3, 5*10!3, 10!2

 

 

reference
lambda=0.074 ! noise 1e!3

lambda=0.33 ! noise 5e!3

lambda=0.41 ! noise 1e!2

5 10 15 20 25 30 35 40 45 50
10!5

100

105

1010

1015

i!value ! truncation at k

L2
 d

is
ta

nc
e

semiconvergence ofi TSVD ! Bremsstrahlung Spectrum

 

 

 noise 1e!3

 noise 5e!3

 noise 1e!2

0 20 40 60 80 100 120
!0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

KeV

re
la

tiv
e 

flu
en

ce
 [#

 fo
to

ni
]

TSVD ! Bremsstrahlung Spectrum ! noise 10!3, 5*10!3, 10!2

 

 
reference
k=9 ! noise 1e!3

k=6 ! noise 5e!3

k=5 ! noise 1e!2

TSVD Tikhonov

TSVD semiconvergence

Tikhonov 
semiconvergence



0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

KeV

re
la

tiv
e 

flu
en

ce
 [#

 fo
to

ni
]

EM + NO a priori information ! Bremsstrahlung Spectrum

 

 
reference
minL2 ! noise 1e!3

minL2 ! noise 5e!3

minL2 noise 1e!2

0 500 1000 1500 2000 2500 3000 3500 4000

10!1

# iterations

L2
 d

ist
an

ce

semiconvergence of EM + NO info ! Bremsstrahlung Spectrum

 

 
 noise 1e!3

 noise 5e!3

 noise 1e!2

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

KeV

re
la

tiv
e 

flu
en

ce
 [#

 fo
to

ni
]

EM+end point information !  Bremsstrahlung Spectrum

 

 
reference
minL2 ! noise 1e!3

minL2 ! noise 5e!3

minL2 noise 1e!2

0 500 1000 1500 2000 2500 3000 3500 4000

10!2

10!1
semiconvergence of EM + end point info ! Bremsstrahlung Spectrum

# iterations

L2
 d

is
ta

nc
e

 

 
 noise 1e!3

 noise 5e!3

 noise 1e!2

Simulations & FOM:
 Expectation Maxmization

EM algorithm
+

FLAT prior

EM algorithm
+

EndPoint info

EM algorithm 
semiconvergence



Experimental Validation:
set up

• background radiation 
• scattering

metal foils 
holder

X Ray
Source

Lead 
collimator

experimental set-up

detector
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Thomson Source Simulations:
Expectation Maximization Algorithm
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ABSTRACT The process of Thomson scattering of an ultra-
intense laser pulse by a relativistic electron bunch has been
proposed as a way to obtain a bright source of short, tunable
and quasi-monochromatic X-ray pulses. The real applicability
of such a method depends crucially on the electron-beam qual-
ity, the angular and energetic distributions playing a relevant
role. In this paper we present the computation of the Thomson-
scattered radiation generated by a plane-wave, linearly po-
larized and flat-top laser pulse, incident on a counterprop-
agating electron bunch having a sizable angular divergence
and a generic energy distribution. Both linear and nonlinear
Thomson-scattering regimes are considered and the impact of
the rising front of the pulse on the scattered-radiation distri-
bution has been taken into account. Simplified relations valid
for long laser pulses and small values of both scattering angle
and bunch divergence are also reported. Finally, we apply the
results to the cases of backscattering with electron bunches
typically produced with both standard radio-frequency-based
accelerators and laser–plasma accelerators.

PACS 13.60.Fz; 41.60.-m; 41.75.Jv

1 Introduction

Thomson scattering from free electrons is a pure
electrodynamical process in which each particle radiates while
interacting with an electromagnetic wave. From the quantum-
mechanical point of view Thomson scattering is a limiting
case of the process of emission of a photon by an electron ab-
sorbing one or more photons from an external field (see e.g. [1]
and references therein), in which the energy of the scattered
radiation is negligible with respect to the electron’s energy. If
the particle absorbs only one photon from the field (the linear
or nonrelativistic quivering regime), Thomson scattering is
the limit of Compton scattering in which the wavelength λX
of the scattered photon observed in the particle’s rest frame is

! Fax: +39-050-315-2256, E-mail: tomassini@ipcf.cnr.it

much larger than the Compton wavelength λc = h/mec of the
electron [2]. Since λc/λX ! 1, the Thomson-scattering pro-
cess can be fully described within classical electrodynamics
both in the linear and the nonlinear (i.e. when the electron
absorbs more than one photon) regimes.

Thomson scattering of a laser pulse by energetic counter-
propagating electrons has been proposed since 1963 [3–5] as a
quasi-monochromatic and polarized photon source. With the
development of ultra-intense chirped and pulsed amplification
(CPA) laser systems [6], the interest in this process dramat-
ically renewed. The Thomson-scattering process of photons
of ultra-intense laser pulses onto relativistic electron bunches
can be employed as a bright source of energetic photons from
UV to γ rays [7–9], an attosecond source in the full nonlinear
regime [10], powerful diagnostics on the bunch itself [11–14]
and a bunch cooler [15].

Recent experimental investigations [16–20] performed
in the linear regime confirmed the production of a high-
brightness X-ray flux in 90◦ and 180◦ collisions between CPA
laser pulses and ultra-relativistic bunches; several proposals
for direct medical applications of these sources have been
presented [21–24].

The four main parameters of the Thomson-scattering pro-
cess of a pulse by a free electron are the particle energy
E0 = γ0mec2, the laser pulse peak normalized amplitude

a0 ≡ e2 A/(mec2) = 8.5 × 10−10
√

Iλ2
0, I being the peak in-

tensity in W/cm2 and λ0 the wavelength in µm, the pulse
longitudinal envelope rise time TR and the angle αL between
the propagation directions of the pulse and the electron. The
pulse amplitude a0 controls the momentum transferred from
the laser pulse to the electron, i.e. the number of photons of
the pulse absorbed by the electron. If a0 ! 1, only one photon
is absorbed and the resulting electron motion always admits
a reference frame in which the quivering is nonrelativistic
(linear Thomson scattering). For an electron initially moving
with γ0 & 1 and a pulse having an adiabatic rising front (i.e.
with a rise time TR much greater than the pulse period λ0/c),
the resulting scattered radiation is spectrally shifted at a peak
wavelength λX ' λ0/(2γ 2

0 (1 − cos αL)) and emitted forward
with respect to the electron initial motion within a cone of
aperture ≈ 1/γ0.
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Thomson Source Simulations:
Expectation Maximization Algorithm
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CONCLUSIONS

• a COMPLETE METHOD for spectral estimation from attenuation 
data analysis has been demonstrated both on SIMULATED and REAL 

EXPERIMENTS for filtered Bremsstrahlung Xray radiation

• SIMULATION STUDIES seems to show that Expectation 
Maximization Algorithm can be useful in the characterization of a high 

fluence, quasi-monochromatic Xray source as ICS Sources can be
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CONCLUSIONS

• a COMPLETE METHOD for spectral estimation from attenuation data 
analysis has been demonstrated both on SIMULATED and REAL 

EXPERIMENTS for filtered Bremsstrahlung Xray radiation

• SIMULATION STUDIES seems to show that Expectation Maximization 
Algorithm can be useful in the characterization of a high fluence, quasi-

monochromatic Xray source as ICS Sources can be

WAITING FOR A REAL ICS MEASUREMENTS

• evaluation of Tikhonov-type 
Regularization imposing flatness 

at the boundaries and using 
different norms (L1)

• simulation study of different 
stopping rules for Expectation 

Maximization Algorithm

• a different approach to this 
kind of indirect spectrometry

• for example DIFFRACTION 
and COMPTON SCATTERING  
measurements can be a good 

choice
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