

DEVELOPMENT OF ADVANCED QUANTUM-BEAM SOURCES AND THEIR APPLICATIONS AS SOPHISTICATED IMAGING TOOLS

By

K.YAMADA¹, R.KURODA¹, H.TOYOKAWA¹, H.IKEURA-SEKIGUCHI¹, M.YASUMOTO¹, N.SEI¹, H.OGAWA¹, M.KOIKE¹, R.SUZUKI¹, F.SAKAI², K.MORI³, H.MORI⁴, N.FUKUYAMA⁴, E.SATO⁵

¹National Institute of Advanced Industrial Science and Technology (AIST)

²Sumitomo Heavy Industries, Ltd.(SHI)

³ Ibaraki Prefectural University of Health Sciences

⁴Tokai University, School of Medicine

⁵Iwate Medical University

QUANTUM-BEAMS AS IMAGING TOOLS AT AIST

Laser Compton X/gamma-rays

Free Electron Lasers

- # UV beam line in operation (300 198 nm)
 Imaging of surface chemical phenomena using photoelectric effects
- # IR beam line in commissioning (1 10 μ m)
 Imaging of surface chemical phenomena using molecular vibration
 Generation of intra-cavity laser Compton X rays

Slow positron beams

S-band linac based system
Characterization of thin films containing defects and pores in atomic nanometer scales
Defect-sensitive positron microscopy

AIST ACCELERATOR FACILITIES

Imaging by Compton X-rays

S-BAND COMPACT LINAC BASED COMPTON X-RAY SOURCE

REFRACTION CONTRAST IMAGING OF BIOLOGICAL SPECIMEN

- X-ray refraction due to phase shift enhances the contrast around the region boundary even in almost transparent materials.
- ·Partial spatial-coherence in X-rays is required.

REFRACTION CONTRAST IMAGING: SAMPLE #1

Accumulating Time: 30 min (18,000 pulses) Lumbar vertebra Imaging Plate sample 30keV X-ray 2.97 m LCS-X Be / Kapton window Imaging plate Specimen expansion **J** R₁ 2970mm R₂ 40-750mm Optical bench 1mm (a) (b) (c) Contrast enhancement obseved Relative density with increasing distance H. Ikeura-Sekiguchi et al., Distance (mm) 40mm *Applied Physics Letters*, 92, 131107 (2008) 200mm 750mm

DIAGNOSIS OF OSTEOPOROSIS

Sample: Hind limbs of Normal mouse & OVX mouse

OVX: ovary-extracted

Normal

Observed at 20 cm from the sample

Bone erosion observed in case of the OVX mouse

→ A symptom of osteoporosis ?

K-EDGE IMAGING FOR ANGIOGRAPHY

Goal:

- Diagnosis of arterioles (very thin blood vessels) in patients, such as diabetic

Samples:

- Rabbit ears with iodinated and barium contrast media Detectors:
 - Cooled X-ray CCD
 - Imaging Plate
 - HARP camera with X-ray image intensifier

K-EDGE IMAGING FOR ANGIOGRAPHY IN ACCUMULATION MODE

Sample: Rabbit ears

- -Cooled X-ray CCD
- -lodinated contrast medium
- -33 keV
- -30-min. accumulation
- -5th thin vascular branch observed

- -Cooled X-ray CCD
- -Barium contrast medium
- -37 keV
- -5-min. accumulation
- -No remarkable difference from the use of iodinated contrast medium

- -Imaging Plate
- -Iodinated contrast medium
- -33 keV
- -10-min, accumulation
- -7th thin vascular branch observed

Achieved <u>spatial resolution</u> reached about <u>80µm both for CCD and IP</u>, the detector resolution.

K-EDGE IMAGING FOR ANGIOGRAPHY IN ACCUMULATION MODE

Sample: Canine heart

- -Cooled X-ray CCD
- -lodinated contrast medium
- -33 keV
- -30-min. accumulation
- -3rd vascular branch observed

- -Imaging Plate
- -lodinated contrast medium
- -33 keV
- -10-min. accumulation
- -108-μm thin vascular branch observed

Spatial resolutions was 108 μ m even for IP due to thickness of the specimen. More Compton-photon flux required.

K-EDGE IMAGING FOR ANGIOGRAPHY IN REAL-TIME MODE

Detector: HARP camera with X-ray image intensifier

Samples: Resolution chart

Rabbit's ear with iodinated contrast medium

Duration of X-rays: 3 ps (rms)/shot

-250- µ m resolution achieved

-lodinated contrast media

-33 keV

-10-shot mode (1-sec. accumulation)

-3rd vascular branch (480 μm in bore) observed

(125- μ m in 10-shot accumulation) - 3^{ra} vascular branch (480 μm in back At present the resolution of real-time K-edge imaging is insufficient and

an enhancement of X-ray flux will be required.

Flat-panel detector will be more suitable due to its higher resolution.

Imaging by Compton γ**-rays**

STORAGE-RING BASED LASER COMPTON γ-RAY SOURCE

PHOTOGRAPH OF TERAS

Location: Tsukuba, Japan (AIST)

Energy: 300 ~ 800 MeV

Current: 300 mA

Construction year: 1981

Circumference: 30 m

Operation frequency: 172 MHz Natural emittance: 600 nm rad

Harmonics: 18

Life (1/e): 8 hours

Critical energy: 490 eV

SCHEMATIC VIEW OF THE LASER-COMPTON GAMMA-RAY BEAM LINE

ATTENUATION OF GAMMA PHOTONS IN MATERIALS

$$\frac{dI}{dx} = -\sigma NI, \quad \sigma \approx \sigma_c + \sigma_p$$

$$I = I_0 e^{-\mu x}, \quad \mu = \sigma N$$

 μ : linear attenuation coefficient

σ: total cross section

 $\sigma_{\rm c}$: Compton scattering cross section

 $\sigma_{\!\scriptscriptstyle D}$: pair-creation cross section

 \dot{N} : Atomic number density

Compton gamma-ray CT gives correct spatial distribution of μ with a good contrast resolution.

Berger M.J. et al., XCOM: Photon Cross Sections Database, NIST Standard Reference Database 8 (XGAM)

ESTIMATION OF SPATIAL RESOLUTION

Aluminum phantom with stainless rods

Rod thickness measured from the CT image

(a) photograph

(b) CT image

ESTIMATION OF CONTRAST RESOLUTION

Sample materials

Aluminum (Al), NILACO, 99.999%, [D9.5xL100], s.g. = 2.70

Silicon rod (Si), 28.08 amu, 99.9999%, [D40xL100], Specific gravity (s.g.) = 2.33 Deuterium oxide (D_2O), MERECK Art. 3428, 99.9%, [100ml, o.d.=53], s.g. = 1.1056 Barium fluoride (BaF_2), molecular mass=175.32, [o.d.=10mm], s.g. = 4.89 Water (H2O), [o.d.=46mm], s.g. = 1 Magnesium (Mg), NILACO, 99.95%, [D9.5xL100], s.g. = 1.738 Copper (Cu), NILACO, 99.999%, [D9.5xL100], s.g. = 8.92

Contrast resolution: 3% for copper (0.275 cm⁻¹)

TYPICAL CT IMAGE OF A CRACKED CONCRETE BLOCK

- Gamma-ray of 10 keV.
- Cross section at 5 mm under the surface.
- Coarse aggregates and mortar are well distinguished.
- Crack runs in the mortar area avoiding coarse aggregates.
- The finest crack width recognizable is 0.2 ~ 0.3 mm.

AN EXAMPLE OF COMPTON GAMMA-RAY CT

Bottom view

An old concrete fragment used for radiation shielding, containing iron ores and a rebar for reinforcement.

CT image

A TRIAL OF CT IMAGING USING POSITRON-ANNIHILATION GAMMA RAYS

DUAL-ENERGY CT USING POSITRON-ANNIHILATION GAMMA RAYS AND COMPTON GAMMA RAYS

Reinforced concrete cube with 10-cm edges.
(Dashed circles indicate the rebars' positions.)

CT with 511-keV annihilation gamma-rays

CT with 9.05-MeV transmitted gamma-rays

Imaging by Free Electron lasers /

NIJI-IV STORAGE-RING FREE-ELECTRON LASER FOR IMAGING OF SURFACE CHEMICAL PHENOMENA

Circumference 29.6 m

Lattice TBA

Electron energy 240 – 450 MeV

RF frequency 162.17 MHz

Betatron tune H 2.291

Betatron tune V 1.214

M compaction factor 0.089

Natural emittance 6.5×10⁻⁸ m rad

Natural bunch length 50 ps

Energy spread 2.6×10^{-4}

- Substrate: Pd(111)

- Temperature: 360K

- Reactant:

Mixture of CO(5×10^{-6} Pa)

and O_2 (4 x 10⁻⁵ Pa)

- Field of view: 200 μm^φ

Surface chemical reaction observed by PEEM with DUV-FEL as an excitation source

OBSERVATION OF Cs-Te PHOTOCATHODE BY PEEM WITH DUV-FELs

Photo-excitation by a Hg-Xe lamp

Imaging by Slow Positron Beams/

THIN-FILM CHARACTERIZATION WITH PULSED SLOW POSITRON BEAMS

Ta converter W moderator Slow e+

Pulsed slow e+ beams

- Intensity: 108 e+/s (max)

- Initial Energy: ~5 eV

PALS(Positron Annihilation Lifetime Spectroscopy),

Pore-size measurement in atomic - nm scale.

AMOC(Age-Momentum Correlation)

Defect and impurity identification.

PAES (Positron annihilation induced Auger Electron Spectroscopy)

Surface characterization.

AIST POSITRON LIFETIME SPECTRA OF LOW-K FILMS FOR NEXT GENERATION LSI

PECVD grown films generally have smaller pores than SOD grown films Higher mechanical strength

IMAGING OF DEFECT DISTRIBUTION WITH POSITRON PROBE MICRO ANALYZER

SUMMARY

- ✓ Quantum-beams developed at AIST accelerator facities were applied as imaging tools to clarify various features in materials.
- ✓ Compton X-rays based on a compact linac were very usuful for refraction contrast imaging in biological specimen and K-edge imaging for microangiography.
- Compton gamma-rays indicated a good performance as high-energy photon sources for non-destructive inspection in both transmission and positron annihilation modes.
- FEL excited photoelectron emission microscope may reveal the degradation mechanisms of Cs-Te photocathode used in the RF gun.
- ✓ Positron micro probe successfully realized the defect-distribution imaging.