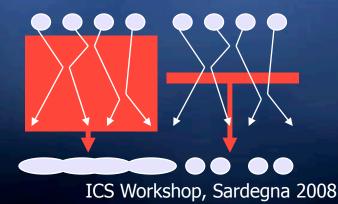
Inverse Compton Scattering: an introductory overview


J.B. Rosenzweig UCLA Dept. of Physics and Astronomy September 8, 2008

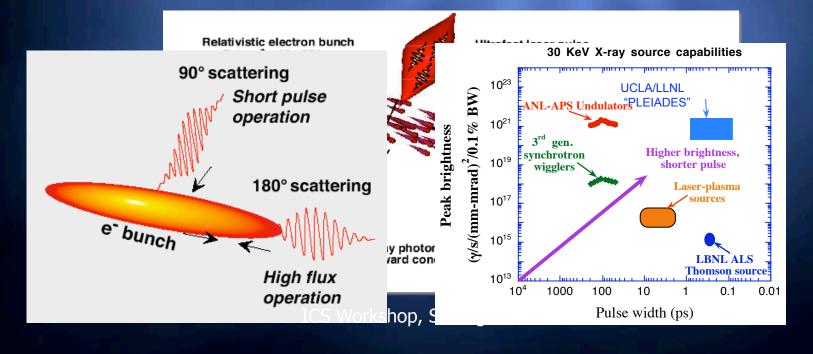
Bright Photon Sources

 Photons from keV to MeV energy critical for basic science, medicine, industry, defense apps
 Short length scales
 atomic or below (Å)

Fast time scales demanded
 atomic motion in molecules and solids (0.1-1 psec)

3rd-4th Generation Light Sources

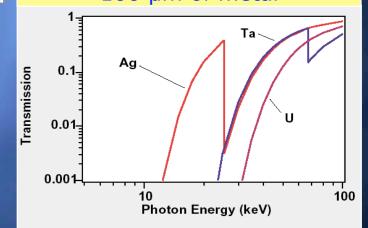
- Synchrotron light sources: < 50 keV, > 50 ps
- X-ray FEL (LCLS): energy ≤25 (50?) keV, 1-100 fs
- K_{α} : energy limit ~ 100 keV, 4π emission



New approach: inverse Compton scattering (ICS)

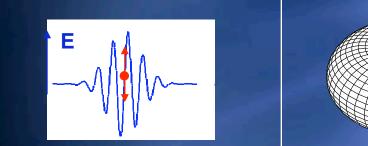
Inverse Compton Scattering (ICS)

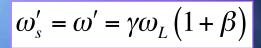
- Collision of relativistic electron beam bunch with intense laser pulse
- Source is *bright* (directional, ultra-fast)
- Scattered light is ~monochromatic new techniques enabled
- Tunable in wavelength, like FEL
- Much less expensive than XFEL. Competition bred from FEL R&D!


Applications of monochromatic ICS photons

Ultra-fast materials characterization

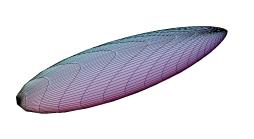
- # X-rays (keV) for penetrating metals
- Example: PLEIADES
- Biology and medicine
 - Breakthrough diagnosis/therapy
- - Slow positrons (for materials)
 - Nuclear materials detection
- High energy physics (GeV)


X-ray transmission through 100 µm of metal


Probing macroscopic metals requires x-ray energies above 10 keV

Physics scenario

E-beam rest frame



Thomson limit (180° ICS)

General View: Lab frame

Intense Laser

e- beam

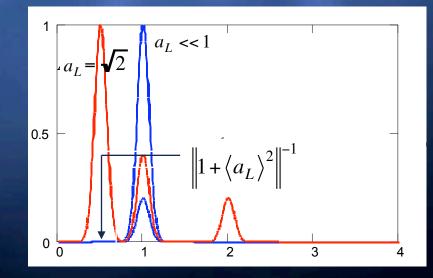
Lorentz boosted radiation forward directed $\omega_{s} \approx 4\gamma^{2} \omega_{L} \left(1 - \frac{\left(\gamma \theta_{s} \right)^{2}}{2} \right)$

Doppler upshifted, angular redshift

X-ray flux depends on overlapping electrons, laser photons

Scattered photons in collision

♦ Scattered flux
 N_γ = Lσ_T
 σ_T = ^{8π}/₃r_e²
 Thomson X-section
 ♦ Luminosity as in HEP collisions
 ⊕ Many photons, electrons
 □ = <sup>N_LN_e/_{4πσ²_x}
 ⊕ Focus tightly
 ⊕ Short laser pulse; <few psec (depth of focus)
</sup>


Experimental challenges: laser

◆ Laser system (optimize for flux)
⊕ Short to ultra-short pulse (0.1 - 10 psec)
⊕ Repetition rate (100 Hz - 10 kHz)
⊕ Up to ~1 J useful, limited by nonlinear effects
⊕ Red-shift, harmonics

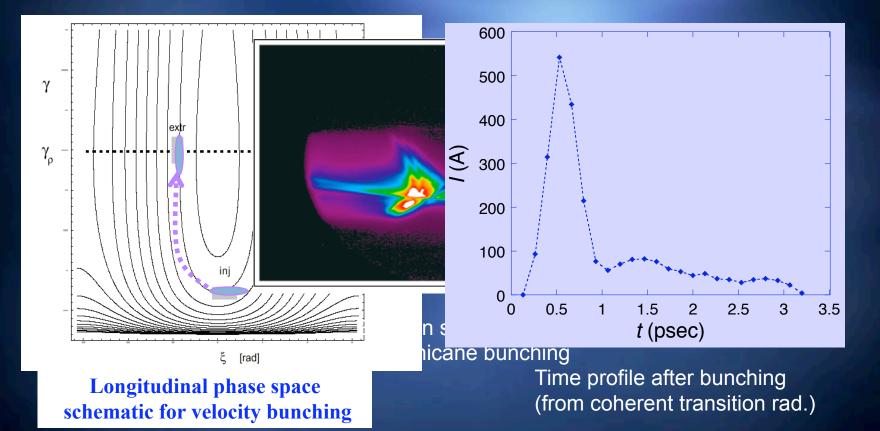
Optimum: 1 photon/electron (1% BW)

Nonlinear effects $(a_L \sim 1)$


"Figure 8" in e- trajectory

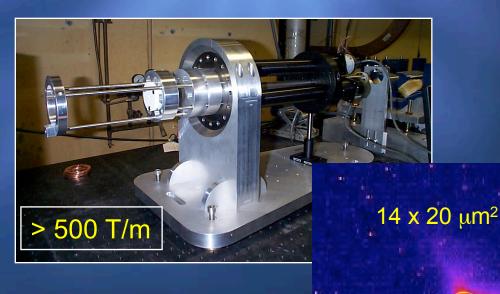
Experimental challenges: electron source

◆ Electron source: photoinjector
 ⊕ Cathode photoexcited by psec laser, Q=1 nC
 ⊕ Ultra-high field RF acceleration, >100 MV/m
 ◆ Post-acceleration and careful focusing
 ⊕ Controlled plasma oscillations; low emittance, c,=2 mm-rad


UCLA RF Photocathode Gun (5 MeV)

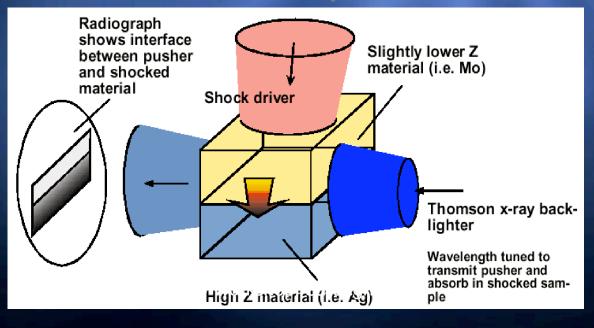
Linear accelerators At LLNL PLEIADES (to <150 MeV)

Manipulation of Electron Beam: Bunching


Bunching to 0.1 psec (fight plasma expansion)
 Avoid beam self-destruction in chicane (bending)

Manipulation of Electron Beam: Focusing

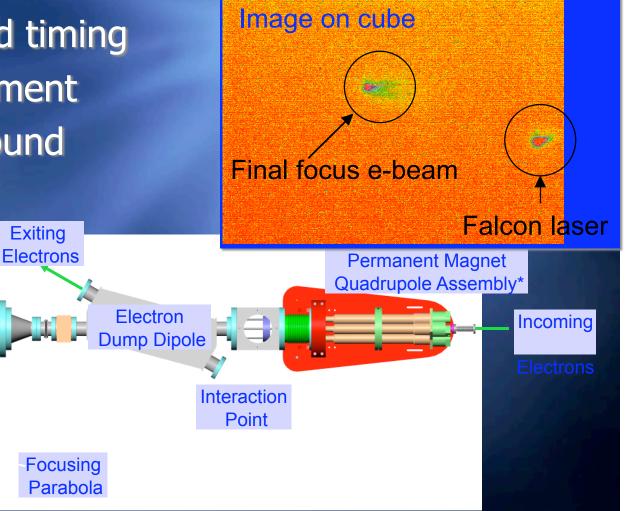
Ultra-strong focusing (10 μm spots) World's strongest quadrupoles, "camera" triplet


Designed and built at UCLA

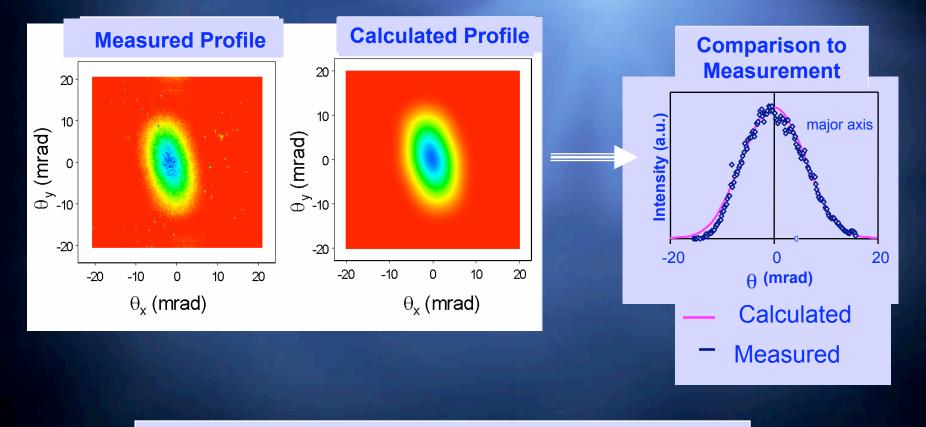
Example: PLEIADES at LLNL

- Ultra-fast, high energy density physics
- Fundamental material studies for
 - Inertial confinement fusion
 - A Nuclear stockpile stewardship
- Pump-probe systems with high power lasers

✤ Nonlinear ICS electrodynamics

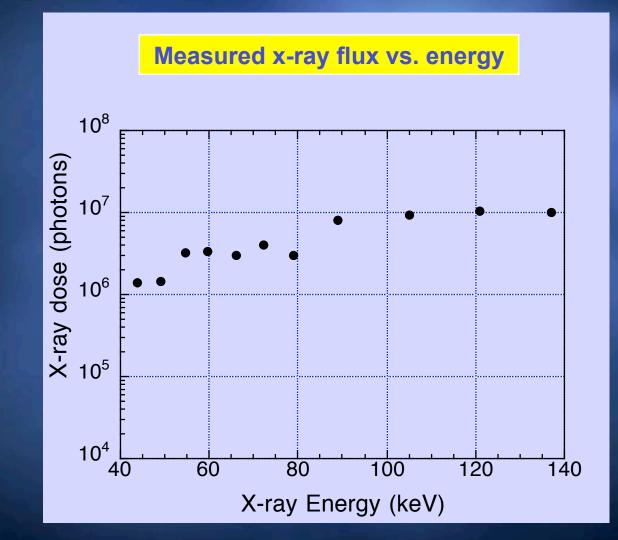

Interaction region

Sub-picosend timing Micron alignment Low background

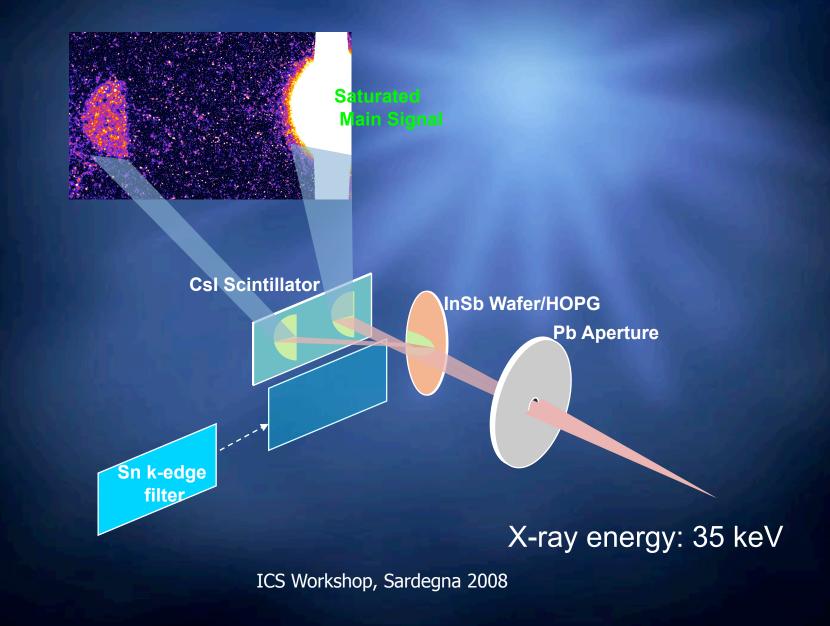

Mirror

with Hole

Exiting



PLEIADES results: benchmark production


10⁷ photons, $B_x > 10^{16}$ photons/s/mm²/mrad²/.1%bw

X-ray energy tunability

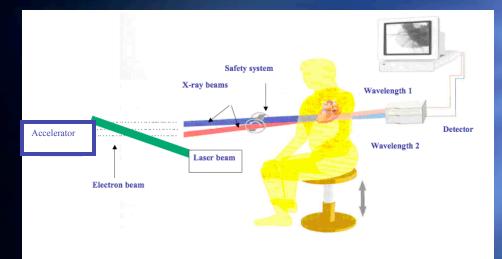
X-ray energy tuned by e-beam energy

Static diffraction demonstrated

Beyond the science community: medical applications Monochromatic photons allow much better interaction specificity New diagnostics New therapy modes Promising approach Funding agencies, investors interested Industrial development of linac-based ICS Don't need peak flux... mini-storage ring-based solution (see Ruth talk)

Medical photons requirements

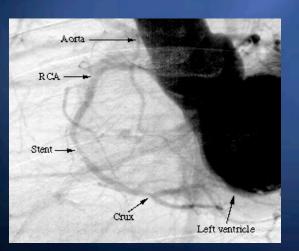
Table 1. Target specifications for NHLBI Pulsed X-ray Source	
Parameter	NHLBI source (projected)
Peak flux, ph/pulso	10^10
Repetition rate, Hz	1 to 10 (up to 1 kHz in the future)
Average flux, ph/s	10^11 to 10^13
Peak brilliance, ph/(s mm^2 mrad^2 1%bw)	10^23
Wavelength range, Å	0.4 to 45
Energy range, keV	0.28 to 30
Energy bandwidth, %	0.1 to 10
Pulse width, ps	<10
Source size, um	<20
Divergence, mrad	<2
Tunability	repotition rate, bandwidth, wavelength
Coherence	partial, transverse
Suggested dimensions, m	3 x 5 x 1.5
Most critical parameters are given in bold,	

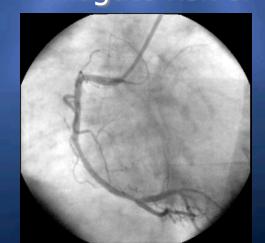

Table 4 March 4

Medical applications demand

- Variable energy
- large numbers of photons
- A Narrow bandwidth
- Example: NIH pre-solicitation
 These parameters are

possible?


Medical applications: Dichromatic imaging


Illuminate above and below contrast K-edge
 Digital image subtraction
 Established at synchrotrons

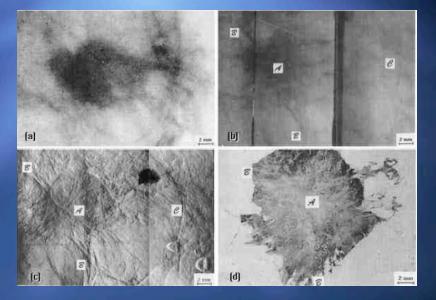
 Access limited
 Expensive (\$100M's)

 Mitigate risk of angiography

Conventional angiogram

Digital subtraction angiogram (same patient, same day)

Low dose 3D imaging


← 60 images ← Total dose 74 mR

From MXISystems website

Medical applications: mammography

 Conventional X-ray imaging difficult in mammography
 Soft-tissue contrast poor
 Monochromatic X-rays enable new techniques
 Phase contrast imaging
 3D with low dose

Mammography images of adenocarcinoma. (a) conventional mammogram; (b) monochromatic beam at 22.2 keV; (c) phase contrast image based on monochromatic X-ray beam; (d) histological section.

Mammography in 3D

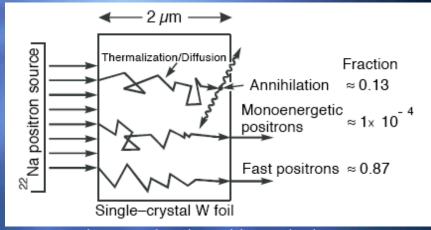
Mammography phantom shows very fine "lesions"
Less dose than conventional 2D

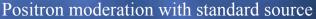
Medical uses: monochromatic cancer therapy

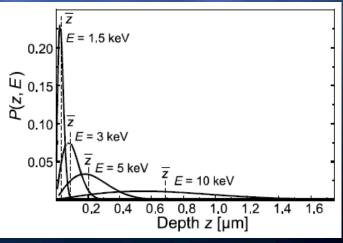
Tagged Agents Imaged by Noninvasive X-Ray Absorption or Diffraction Spectroscopy

Intensity Increased to Deliver Localized Radiation Dose .

X-Ray Intensity

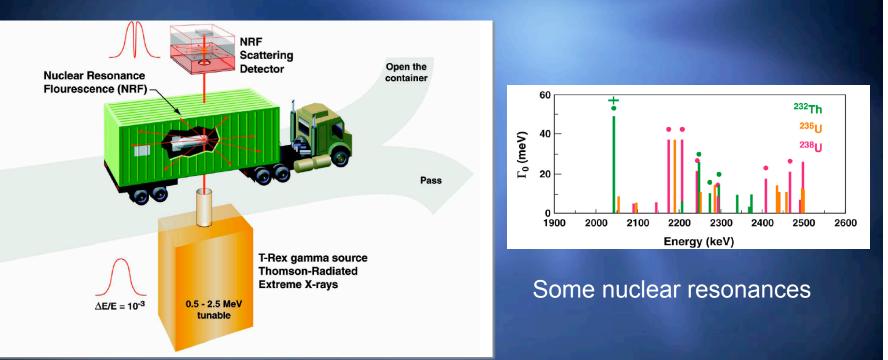

X-Ray Energy

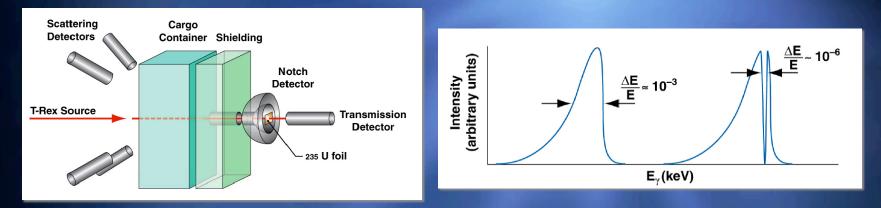

K-edge (~30 keV in iodine)


Allows treatment of very difficult tumors
Very successful test in mice

Higher energy application: defect profiling with e+'s

Pair production for photon energies above threshold
266 nm laser; > 148 MeV
Moderate positrons
produce ultra-cold beam
Surface studies
Or... create e+e- pairs in situ
Positrons gather at defects
Directly probe material defects
Very promising NDT technique




Positron depth for defect profiling

High energy application: nuclear materials detection

Based on nuclear resonance fluorescence
 Need v. *narrow band* gammas, MeV level
 FINDER at LLNL: Fluorescence Imaging in the Nuclear Domain with Energetic Radiation
 LLNL-UCLA collaboraiton

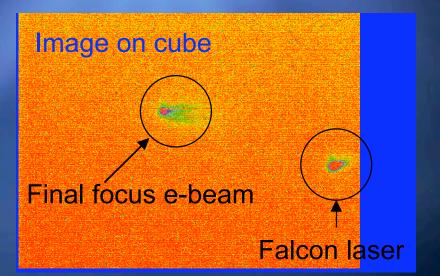
NRF detection scheme

Indirect notch detection (Bertozzi scheme)

- Compare transmission through suspect foil to scatttering, look for discrepancy
- Very narrow band photons desired
- Photon production, reported by Siders (next talk)

Physics limits to ICS brightness Applications limited by brightness/BW Look at spectral broadening mechanisms Relate to laser intensity/photon production Consider nearly head-on collision Work in "Thomson" limit; assume quasi-linear Need Compton model at higher energy

 ω_{I}


 θ_i

Ignoring the electron beam divergence in design

◆ Anecdote: even with bad final *ε* at PLEIADES, the ebeam was smaller at the IP than the laser...

Laser "emittance" usually bigger than the e-beam

$$\varepsilon \cong \frac{\varepsilon_n}{\gamma} << \frac{\lambda_L}{4\pi}$$

Example: PLEIADES design

Е

=
$$1.6 \times 10^{-8}$$
 m, $\frac{\lambda_L}{4\pi} = 6.4 \times 10^{-8}$ m

Begin in electron rest frame

◆ Lorentz transformation of ω -k 4-vector $\omega' = \gamma(\omega_L + \beta c k_L \cos(\theta_i)) = \gamma \omega_L(1 + \beta \cos(\theta_i))$ $k'_{\perp} = k_L \sin(\theta_i)$ $k'_{z} = \gamma(k_L \cos(\theta_i) + \beta \omega_0 / c) = \gamma k_L(\cos(\theta_i) + \beta)$ ◆ Blue-shifted rest frame photon scatters with negligible recoil (Thomson limit) if

$$\hbar \omega' \ll m_e c^2$$
, or
 $\hbar \omega_L \gamma (1 + \beta \cos(\theta_i)) \ll m_e c^2$

BNL example: $\gamma = 120, \ h\omega_1 = 0.12 \text{ eV}$ $\hbar\omega_0\gamma(1+\beta) = 30 \text{ eV} << 5.11 \times 10^5 \text{ eV}$

Thomson scattering in electron rest frame \oplus In Thomson limit, ω is independent of emission direction in rest frame θ' $\omega'_{s} = \omega' = \gamma \omega_{L} (1 + \beta \cos(\theta_{i}))$ Wave-vector components $k'_{\perp s} = \frac{\omega'_{s}}{c} \sin(\theta') = k_{L} \gamma (1 + \beta \cos(\theta_{i})) \sin(\theta')$ $k'_{zs} = k_L \gamma (1 + \beta \cos(\theta_i)) \cos(\theta')$

• Note: Power profile in linear limit is also derived from Thomson $dP_{e} = e^{2}\dot{v}^{2} + 2(x)$

$$\frac{dP_s}{d\Omega'} = \frac{e^2 \dot{v}^2}{4 \pi c^3} \cos^2(\psi)$$

Total Thomson cross-section Lorentz invariant

$$\sigma_T = \frac{8\pi}{3} \left(\frac{e^2}{m_e c^2}\right)^2 = \frac{8\pi}{3} r_e^2$$

Back to the lab frame

↔ Final frequency: $ω_s = γ^2 ω_L (1 + β \cos(\theta_i)) (1 + β \cos(\theta'))$ ↔ Wave-vector components:

 $k_{\perp s} = k_L \gamma (1 + \beta \cos(\theta_i)) \sin(\theta')$ $k_{zs} = k_L \gamma^2 (1 + \beta \cos(\theta_i)) (\cos(\theta') + \beta)$

$$\tan(\theta_s) = \frac{k_{\perp s}}{k_{zs}} = \frac{1}{\gamma} \left(\frac{\sin(\theta')}{\cos(\theta') + \beta} \right)$$

Small angle approximation

Small angle spectrum

Approximate small angle spectrum

$$\omega_{s} = 4\gamma^{2}\omega_{L}\left(1 - \frac{\theta_{i}^{2}}{2}\right)\left(1 - \frac{\left(\gamma\theta_{s}\right)^{2}}{2}\right)$$

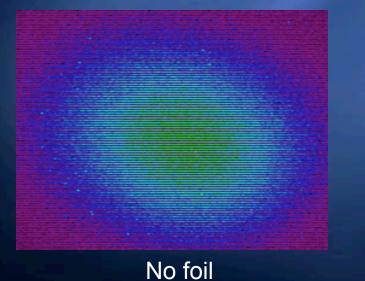
Maximum Doppler shift Incic

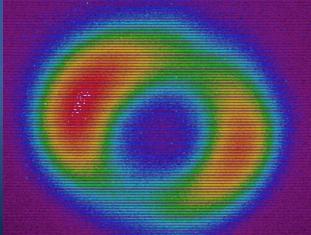
hift Final angle effect Incident angle effect

◆ Final angle-induced red shift familiar from FEL
 ◆ Resonance: when emitted wave-front overtakes electron by λ_r in λ_U (~λ_L/2. Thomson)
 ◆ Relative red shift always ~ (γθ)²/2
 ◆ Some subtle differences with undulator radiation

Angular "efficiency"

Small bandwidth: small emission angles
Write in terms of max "aperture"
In terms of rest frame angle


$$\eta_{acc}(\theta'_{\max}) = \frac{N_{acc}(\theta'_{\max})}{N_{total}} \approx \frac{3}{4} {\theta'_{\max}}^2$$
$$\eta_{acc}(\theta_s) \approx 3(\gamma \theta_s)^2$$


In terms of *rms* bandwidth

$$\eta_{acc}(\theta_{\max}) \cong 6\sqrt{3} (BW_{rms})_{acc}$$

Off-axis redshift in experiment

New expts at BNL, 10 μm laser, ~62 MeV beam
 Very small angles in e-beam
 Absorption of photons by Fe foil, above K-edge
 See talk by O. Williams

Fe foil (7.1 keV K-edge)

Nonlinear red shift, pertubative limit

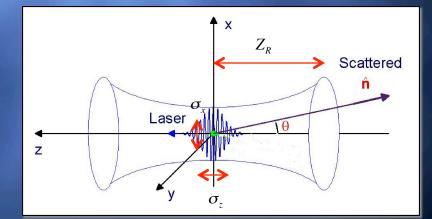
 $m_{a}C\omega_{I}$

Electron has angle in motion due to laser field $\theta \approx \frac{p_{\perp}}{2} \cong \frac{a_L}{2}, \quad a_L = \frac{eE_L}{2}$

 p_0

 \Rightarrow Relative red shift $\frac{(\gamma\theta)^2}{2} = \frac{a_L^2}{2}$ \oplus Result OK for small a_1 only ♣ Figure-8 motion \oplus Harmonics... important for a_1 large RMS BW (gaussian laser)

 $\left(BW_{rms}\right)_{NL} \cong \frac{a_L^2}{7.7}$


Finite pulse length and focal effects

Fourier spread in the laser pulse from finite length

$$(BW_{rms})_{FT} \cong (\sqrt{2}k_L\sigma_z)^{-1} = \frac{\lambda_L}{\sqrt{8}\pi\sigma_z}$$

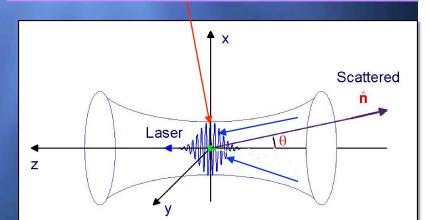
 Bandwidth smaller for longer pulse
 Practical pulse length limited by Rayleigh range

$$\sigma_z \le Z_R = \frac{4\pi\sigma_x^2}{\lambda_L}$$

Inherent angular spread in photons...

Away from the focus, laser phase fronts have angle, with rms spread

$$\theta_{L,rms} = \frac{\sigma_x}{Z_R} = \frac{\lambda_L}{4\pi\sigma_x} \quad (BW_{rms})_{\theta} = \frac{(\theta_L^2)_{rms}}{2} = \left(\frac{\lambda_L}{4\pi\sigma_x}\right)^2$$


flatten, but Guoy phase shift changes local k_{τ}

 $\tan(\varphi(z)) = \frac{z}{Z_R} \longrightarrow BW_{\text{shift}} = \frac{\Delta k_z}{k_z} = \frac{1}{k_z} \frac{d\varphi}{dz} \approx \frac{\lambda_L}{2\pi Z_R} = \frac{\lambda_L^2}{8\pi^2 \sigma_x^2}$

RMS spread same

From dispersion relation:

$$k_{z} = \sqrt{\left(\omega_{L}/c\right)^{2} - k_{\perp}^{2}} \cong \sqrt{k_{L}^{2} - \sigma_{x}^{-2}} \cong k_{L} \left(1 - \frac{1}{2} \left(\frac{\lambda_{L}}{2\pi\sigma_{x}}\right)^{2}\right)$$

Photon production and luminosity

 \oplus Total scattered photons per pulse: $N_{\gamma} = L\sigma_T$

✤ "Luminosity" per pulse:

$$\mathbf{L} = \frac{N_L N_{e-}}{4\pi\sigma_r^2}$$

• Independent of σ_z ; make beam as long as possible to mitigate FT BW: $\sigma_z = Z_R = \frac{4\pi\sigma_x^2}{\lambda_L}$

Under this assumption, angular BW ~
 the Fourier transform BW!

$$\theta_{L,rms} = \frac{\lambda_L}{4\pi\sigma_x} = \frac{\lambda_L}{4\pi}\sqrt{\frac{4\pi}{\lambda_L\sigma_z}} = \sqrt{\frac{\lambda_L}{4\pi\sigma_z}} = 2^{-1/4}\sqrt{(BW_{rms})_{FT}}$$

$$\left(BW_{rms}\right)_{foc} = \theta_{L,rms}^2 = \sqrt{2} \left(BW_{rms}\right)_{FT}$$

Calculate luminosity

♦ Luminosity per assumption: $L = \frac{N_L N_{e^-}}{4\pi \sigma_x^2} = \frac{N_L N_{e^-}}{\lambda_L \sigma_z} = \frac{U_L N_{e^-}}{hc \sigma_z}$ ♦ Look at laser pulse energy density

$$u_{\rm EM} = \frac{N_L h v_L}{\left(2\pi\right)^{3/2} \sigma_z \sigma_z^2} = \frac{U_L}{\sqrt{\pi/2} \lambda_L^2 \sigma_z^2}$$

Pulse intensity and field values...

$$u_{\rm EM} = \frac{\varepsilon_0 E_L^2}{2} = \frac{U_L}{\sqrt{\pi/2}\lambda_L^2 \sigma_z^2} \qquad \text{Or} \qquad E_0 = \sqrt{\frac{2u_{EM}}{\varepsilon_0}} = \sqrt{\frac{2U_L}{\sqrt{2/\pi}\varepsilon_0\lambda_L \sigma_z^2}}$$

 \oplus Put in terms of $a_{L,\max}$ to relate to NL effects

Maximum laser energy

$$U_{L,\max} = \frac{k_L \sigma_z^2 a_{L,\max}^2}{4(8\pi)^{1/2} r_e} m_e c^2 \propto a_{L,\max}^2 \lambda_L^{-1}$$

Maximum photon production

$$\mathbf{L}_{\max} = \frac{U_{L,\max}N_{e^-}}{hc\sigma_z} = \frac{\alpha a_{L,\max}^2 k_L \sigma_z}{\sqrt{8\pi}r_e^2} N_e.$$

♦ Photons per pulse
♦ Now ~1/λ_L!
Number within "acceptance" BW

$$N_{\gamma} = \frac{\left(2\pi\right)^{3/2} \alpha \left(k_L \sigma_z\right) a_{L,\max}^2}{6} \eta \left(\theta_{\max}\right) N_{e-1}$$

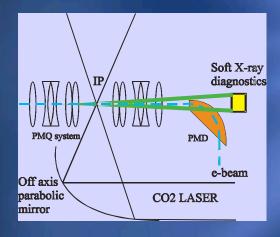
Relating photon production to BW

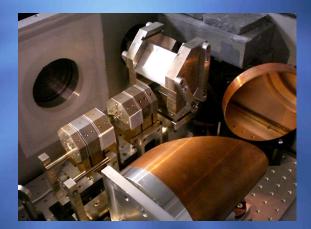
We can cast the photon number in terms of all of the relevant bandwidths

 $N_{\gamma} \simeq 0.76 \frac{\left(BW_{rms}\right)_{acc} \left(BW_{rms}\right)_{NL}}{\left(BW_{rms}\right)_{foc}} N_{e^{-1}}$

♦ Note: laser energy scales as (BW_{rms})⁻⁴_{foc}
 ♦ If NL and angular BW are chosen ~1%, and focus/FT BW is ~1E-4

$$N_{\gamma} \approx N_{e-}$$

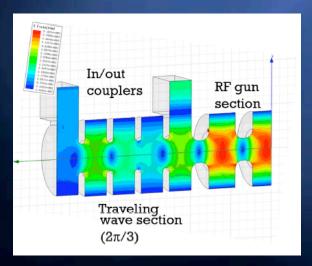

How do you design laser? Choose a laser wavelength \oplus Because of limits on NL motion $U_I \propto \lambda_I^{-1}$ Specify the "focus" bandwidth Now you know the beam dimensions Specify nonlinear BW Now you know the laser pulse energy Specify angular acceptance for desired BW ◆In terms of BWs

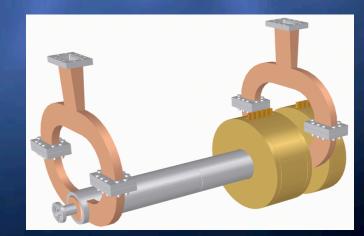

$$U_L = 0.1 \frac{\left(BW_{rms}\right)_{NL}}{\left(BW_{rms}\right)_{foc}^2} \frac{\lambda_L}{r_e} m_e c^2$$

A 1% RMS BW Example

Laser wavelength: 800 nm ✤ Focus BW: 1.5E-4, means $\sigma_{z} = 450 \ \mu m \ (1.5 \ ps)$ and $\sigma_{x} = 5.3 \ \mu m$ Strain electron focus at moderate energy... Image NL (+ angular) bandwidth: 1% \oplus Looks familiar $U_I = 1 \text{ J}$ \oplus For these choices $N_{\gamma} \approx 0.5 N_{e^-}$ \oplus Then... N_{γ} =3x10⁹/nC, with OK emittance $\varepsilon_n << \gamma \lambda / 4\pi = 5 \text{ mm} - \text{mrad} (38 \text{ MeV e} - /35 \text{ keV } \gamma)$

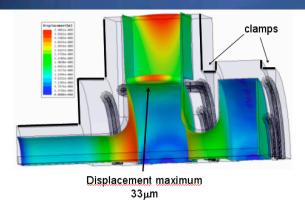
ICS sources: present outlook

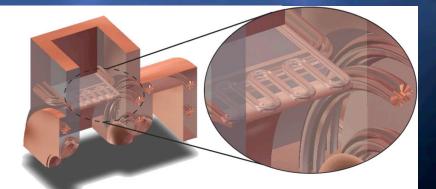

Neptune nonlinear ICS experiment


Photon flux, tunability demonstrated
 Understand nonlinearities better
 Challenges in flux, applications

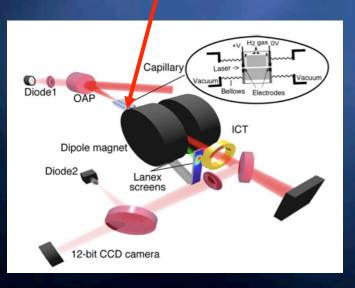
 Better e-beams, smaller accelerator
 Higher repetition rate, high pulse-energy lasers

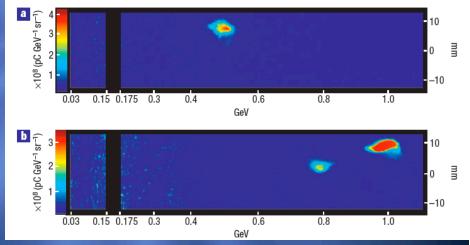
Compact photoinjectors

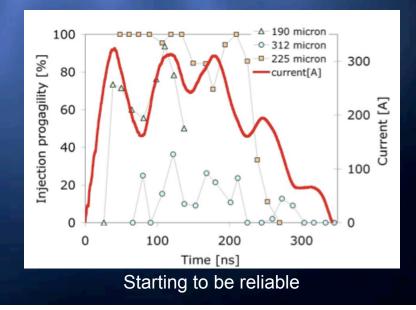

- High frequency (X-band)
 - Better potential performance
- New device: hybrid, traveliing wave-standing wave photoinjector
 - All-in-one solution, produce 15-30 MeV beams
 - # 100 fsec beams, 1 nC, good emittance!
 - Under development at UCLA and Univ. Roma



TW linac (~3 m) attached to SW gun


High repetition rate gun
New lasers promise >1 KHz
Can PI follow?
Need new cooling approach
Direct metal forming (RadiaBeam patent)
Elaborate channels allow 1 kHz operation




True all-in-one ICS source: Laser-Plasma Accelerator

- Up to 1 GeV (Leemans, et al.)
- A Narrow band
- ✤ Reliable?
- E-beam small in plasma
- ♦ Add laser arm to have ICS

<1 GeV "monochromatic" electron beams

 Monochromatic ICS sources have diverse
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 applications from keV to TeV(?) level Basic physics being fleshed out + Limits on average and peak flux Peak: use guiding? G. Travish talk Average: rings or... Technology push still needed E-beam physics now understood Move to table-top (truck bed?) \oplus Increase system rep rate to 10 kHz? Applications! Exciting reports at workshop