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Bright Photon Sources

¢ Photons from keV to MeV energy. critical for
basic science, medicine, INAUSERY, defense apps

4 Short Igngth scales eeo0o0c-00
& atomic or below (&)

2000000

% Fast time scales demanded
# atomic motion in molecules and solids (0.1-1 psec)
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3ra-4th Generation Light Sources

New approach: inverse Compton scattering (ICS)
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Inverse Compton Scattering (ICS)

% Collision of relativistic electron beam ense laser pulse
% Source is bright (directional, ultra-fa
% Scattered light is ~monochromatic — ne liques enabled

¢ Tunable in wavelength, like FEL
% Much less expensive than XFEL. Competition bred from FEL R&D!
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Applications of menochromatic
ICS photons

: ] 4 X-ray transmission through
< Ultra-fast materials characterization 100 pm of metal

& X-rays (keV) for penetrating metals 1
# Example: PLEIADES

<% Biology and medicine
& Breakthrough diagnosis/therapy

¢ Intermediate energy (MeV)
# Slow positrons (for materials)
0 Nuclear materia|s detection Probing macroscopic metals requires

Transmission

10
Photon Energy (keV)

: X-ray energies above 10 keV
¢ High energy physics (GeV)
& yy collider, polarized e+ (see Yakimenko talk)
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Physics scenario

E-beam rest frame

I
N
N4

Thomson limit
(180° ICS)

General View: Lab frame

Intense Laser

Doppler upshifted,

Lorentz boosted radiation angular Iehift

forward directed

X-ray flux depends on overlapping electrons, laser photons
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Scattered photons in collision

~Scattered flux  iiebedd [ g om=on

X-section
¢ Luminosity as in HEP collisions
#Many photons, electrons I

£ Focus tightly |

#Short laser pulse; <few psec (depth of focus)




Experimental challenges: laser

< Laser system
# Short to ultra-short pulse (0.1
# Repetition rate (100 Hz - )

#Up to useful, limited by nonlinear effects
4 Red-shift, harmonics

< Optimum:

Nonlinear effects (aL_~1)

“Figure 8" in
e- trajectory




Experimental challenges:
electron s

¢ Electron source: photoinjecto

# Cathode photoexcited by psec laser,
# Ultra-high field RF acceleration,

¢ Post-acceleration and careful focusing
# Controlled plasma oscillations; low emittance,

UCLA RF & > Linear accelerators

At LLNL PLEIADES | ”

Photocathode (to <150 MeV)

Gun (5 MeV)




Manipulation of Electron

Time profile after bunching

Longitudinal phase space 2
(from coherent transition rad.)

schematic for velocity bunching

¢ Bunching to 0.1 psec (fight plasma expansion)
% Avoid beam self-destruction in chicane (bending)




Manipulation of Electron
Beam. Focusi

< Ultra-strong focusing (
¢ World’s strongest quadr era” triplet

Designed and built ' .
at UCLA : |
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Example: PLEIADES at LLNL

% Ultra-fast, high energy densi

# Nuclear stockpile stewardship
% Pump-probe systems with hi
¢ EXAFS, Bragg, radiography in fsec time-scale
% Nonlinear ICS electrodynamics

Radiograph

shows interface o
between pusher Slightly lower Z
and shocked material (i.e. Mo)

material Shock driver

Thomson x-ray back-
lighter

Wavelength tuned to
transmit pusher and
) 7 ) absorb in shocked sam-
Higin 2 materiai (i.e. Ay) ple




Interaction region

¢ Sub-picosend timin
¢ Micron alignment
¢ Low background

Exiting , :
Electrons Permanent Magnet
Quadrupole Assembly*

Interaction
Point

Focusing

Mirror » Parabola
with Hole
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PLEIADES resu/ (s:

Measured Profile Calculated Profile | Comparison to
Measurement
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107 photons, B,>10'% photons/s/mm?/mrad?/.1%bw
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X-ray energy tunability

Measured x-ray flux vs. energy
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X-ray energy tuned by e-beam energy




Static diffraction demonstrated

Csl Scintillator

I X-ray energy: 35 keV
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Beyond the science community:
medical applications

€ Monochromatic photons al better
interaction specificity
£ New diagnostics
% New therapy modes

% Promising approach

# Funding agencies, investors interested

# Industrial development of linac-based ICS
¢-another spin-off from FEL program - Vanderbilt

#Don‘t need peak flux... mini-storage ring-based
solution (see Ruth talk)
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Medical photons requirements

Table 1. Target specifications for NHLBI Pulsed X-ray Source

NHLBI source (projected)
——

Peak flux, ph/pulso w

Repetition rate, Hz 1to 10 (up to 1 kHz in the future)

Averageo flux, ph/s 101 to 10M3

Peak brilliance
’ A
phf(s mmA2 mrad”2 1%bw) 10023

Wavelength range, A 0.4 to 45
Energy range, keV 0,28 to 30

fergy bandwidth, % m

Source size, um

Divergence, mrad

R repatition rate, bandwidth,
Tunability pa wavelongth

Coherence partial, transverse

Suggested dimensions, m Ix5x15
Most critical parameters are given in bold,

ledical applications demand
& Variable energy

& large numbers of photons
# Narrow bandwidth

% Example: NIH pre-solicitation
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Medical applications:
Dichromatic imaging

< Illuminate above and below

shed at synchrotrons
mited
# Expensive ($100M’s)

4 Mitigate risk of angiography

Conventional angiogram Digital subtraction angiogram
(same patient, same day)




Low dose 3D imaging

4 60 images
< Total dose 74 mR

From MXISystems website
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Medical applications:
mammogtapi)

< Conventional X-ray % -
imaging difficult in .
mammaography
# Soft-tissue contrast poor

4 Monochromatic X-rays
enable new techniques
EEr Phase Contra St |mag|ng Mammography images of adenocarcinoma. (a) conventional

mammogram; (b) monochromatic beam at 22.2 keV; @)

EEL 3 D W|th IOW dose phase contrast image based on monochromatic X-ray beam;

(d) histological section.
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Mammogra

¢ Mammography phantom s ne “lesions”
¢ Less dose than conventi

ICS Workshop, Sardegna 2008




Medical uses: monochromatic
cancer.t
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Intensity Increased to X-Ray Energy
Deliver Localized
Radiation Dose

K-edge (~30 keV in iodine)

— Allows treatment of very difficult tumors
— Very successful test in mice
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Higher energy application:
defect profiling with e+'s

< Pair production for photon
energies above threshold
# 266 nm laser; > 148 MeV

% Moderate positrons
# produce ultra-cold beam
£ Surface studies

< QOr... create e*e" pairs in situ

% Positrons gather at defects

& Directly probe material defects
& Very promising NDT technique

ICS Workshop, Sardegna 2008
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Monoenergetic
positrons =1x 10

Fast positrons = 0.87
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Positron depth for defect profiling
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High energy applica t/on
nuc/ear ma ter/als

Hlﬂlu |J.
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Energy (keV)

Some nuclear resonances

% Based on nuclear resonance fluorescence
% Need v. narrow band gammas, MeV level

at LLNL: Fluorescence Imaging in the
uclear Domain with Energetic Radiation

4 LLNL-UCLA collaboraiton




Scattering Cargo
Detectors Container Shielding
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% Indirect notch detection (Bertozzi scheme)

# Compare transmission through suspect foil to scatttering,
look for discrepancy

% Very narrow band photons desired
% Photon production, reported by Siders (next talk)
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Physics limits to ICS brightness

¢ Applications limited by brightness/BW
£2Look at spectral broadening®mechanisms
#Relate to laser intensity/photon production
% Consider nearly head-on collision

©Work in "“Thomson” limit; assume quasi-linear
##Need Compton model at higher energy

\ 9
> 2
V)

-
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Ignoring the electron beam
divergence in G

4 Anecdote: even with bad
final ¢ at PLEIADES, the e-
beam was smaller at the IP
than the laser...

¢ Laser “emittance” usually
bigger than the e-beam
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Begin in electron rest frame

¢ Lorentz transformation
o' =y(w, + Bck, cos(6),)) = yo, (1+ Bcos(6,))
k' =k, sin(6,)
k! = y(kL cos(6,) + Pw, /c) = vk, (cos(Hl.) + [3’)
©Blue-shifted rest frame photon scatters
with negligible recoil (Thomson limit) if

how' <<m,?, or
hw,y(1+ Bcos(6))) << m,c

BNL example:
Y VIV T VR YAl 7.0 7(1 + ) = 30 eV << 5.11x10°eV




Thomson scattering in
electron rest fi

% In Thomson limit, @ is ind

direction in rest frame 8°
w == ya)L(l + ﬁcos(@i))

< Wave-vector components

ki = &Sin(e') = kLy(l + Beos( ,)) sin(6'
c

k., =k, y(1+ Bcos(6,))cos(6')
¢ Note: Power profile in linear limit is also
derived from Thomson

[Z Invariant




Back to the lab frame

% Final frequency: PR ACYENC) EVENC)
<Wave-vector components:

k,, =k, y(1+ Bcos(6,))sin(6')
k., = kLy2(1 + /a’cos(Hl.))(cos(H') + ﬁ)

<Lab frame angle ka1 sine )

cos(0') + 3

— "
4+Small angle approximation
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Small angle spectrum

< Approximate small angle Spectrt

Maximum Doppler shift Final angle effect
Incident angle effect

¢ Final angle-induced red shift familiar from FEL

#Resonance: when emitted wave-front overtakes
electron by A, in A, (~4,/2. Thomson)

<rRelative red shift always ~
#Some subtle differences with undulator radiation
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©Write in terms of max “aperture”

¢ In terms of rest frame angle
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Off-axis redshift in

& New expts at BNL, 10 um
#Very small angles in e-beam

< Absorption of photons by Fe foil, above K-edge

£ See talk by O. Williams




Nonlinear red shift, pertubative limit

¢Electron has angle in
laser field

¢Result OK for small ¢, only
£Figure-8 motion
#Harmonics... important for g, large

©RMS BW (gaussian laser)
4-Beginning BNL studies
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Finite pulse length and focal effects

¢ Fourier spread in the laser
pulse from finite length

< Bandwidth smaller for
onger pulse

¢ Practical pulse length
imited by Rayleigh range
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< Away from the focus,
laser phase fronts have
with rms spread

A
ZR x rms 2

4 In focu, phase fronts
flatten, but Guoy phase
shift changes local %,
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Photon production and luminosity

¢ Total scattered photons p :

NLNe—

¢ “Luminosity” per pulse: =
% Independent of o,; make beam as Iong

% Under this assumption, angular BW o~
the Fourier transform BW!

OL Jms = =




Calculate luminosity

<Putin terms of g, ... to relate to NL effect
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<-Laser energy
#Linear with 4.2

<Maximum in terms of a; ... (BW...)

¢ Relate to luminosity...
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Maximum photon proeduction

< Luminosity
¢Photons per pulse

#Now ~1/A;!
< Number within “acceptance” BW
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Relating photon pro

©We can cast the photon
terms of all of the releva andwidths

<+ Note: laser energy scales as e explot

larger size beam

¢ If NL and angular BW are chosen ~1%,
and focus/FT BW is ~1E-4
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How do you design laser?

<-Choose a laser wavelendti

©Specify the “focus” bandwidt
£+ Now you know the beam dimensions

& Specify nonlinear BW
#Now you know the laser pulse energy

¢ Specify angular acceptance for desired BW
4In terms of BWSs
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A 1% RMS BW Example

¢ Laser wavelength: 800 nt
< Focus BW: 1.5E-4, means

o, =450 um (1.5 ps) 4

£ Strain electron focus at moderate energy...
¢ NL (+ angular) bandwidth: 1%

< Looks familiar [ZfEsR)

< For these choices AEIVI'A

¢ Then... N.=3x10°/nC, with OK emittance
g, <<yYA/4m =5 mm-mrad (38 MeV e-/35 keV y)
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ICS sources: present outlook

Neptune nonlinear ICS experiment

% Photon flux, tunability demonstrated
< Understand nonlinearities better

% Challenges in flux, applications
# Better e-beams, smaller accelerator
# Higher repetition rate, high pulse-energy lasers
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Compact photoinjectors

% High frequency (X-band)
# Better potential performance

% New device: hybrid, traveliing wa ding wave
photoinjector
% All-in-one solution, produce 15-30 MeV beams

# 100 fsec beams, 1 nC, good emittance!
# Under development at UCLA and Univ. Roma

In/out

couplers . RFgun
section

Traveling .
wave section

(2n/3)

TW linac (~3 m) attached to SW gun




High repetition rate gun

©New lasers promise >.
%-Can PI follow?
¢ Need new cooling approach

#Direct metal forming (RadiaBeam patent)
f+Elaborate channels allow 1 kHz operation
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True all-in-one ICS source.

< Up to 1 GeV (Leemans, et al.)
% Narrow band

¢ <100 pC, low emittance

% Reliable?

% E-beam small in plasma

% Add laser arm to have ICS
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Conclusions

% Monochromatic ICS sources have diverse
applications from keV to TeV(?)sevel
¢ Basic physics being fleshed out
£ Limits on average and peak flux
# Peak: use guiding? G. Travish talk

£ Average: rings or...

¢ Technology push still needed
£ E-beam physics now understood
# Move to table-top (truck bed?)
# Increase system rep rate to 10 kHz?

< Applications! Exciting reports at workshop

ICS Workshop, Sardegna 2008




