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» Turbulent Chiral Flows in 2D
> Rotating superfluid (say, He*)

» Electronic liquid in a strong magnetic field (Quantum Hall Effect)



2D INCOMPRESSIBLE FLOWS CONSIST OF VORTICES

Say, on a sphere, there are no flow at all unless there are vortices or boundaries



HOW IMPORTANT THAT VORTICES ARE QUANTIZED?

Two step quantization:

» Classical fluid: Circulation of each vortexisI'=n x i

n—o oo, h—0, I =fixed
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HOW IMPORTANT THAT VORTICES ARE QUANTIZED?

Two step quantization:

» Classical fluid: Circulation of each vortexisI'=n x i

n—o oo, h—0, I =fixed

» Quantum vortices n = 2,3....
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HYDRODYNAMICS OF THE VORTEX FLUID (2D)

» Vortices can be viewed as constituencies of a secondary fluid
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HYDRODYNAMICS OF THE VORTEX FLUID (2D)

» Vortices can be viewed as constituencies of a secondary fluid

the vortex fluid

or vortex matter

» Fast motion: fluid precessing around vortices

» Slow motion: drift of vortices

» What is hydrodynamics of quantum vortex fluid?

» classical fluid subject of the paper with Alexander Abanov
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OUTLINE

» Hydrodynamics of vortex flow: fluid of topological constitences
» Exotic effects of quantization

» Example: Effect of torsion
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ONSAGER: NUOVO CIMENTO PAPER, 1949

» The idea to treat vortices as a macroscopical system goes back to Onsager

SUPPLEMENTO AL VOLUME VI, S8ERIE IX DEL NUOVO CIMENTO N. 2, 1949

XIIT.

Statistical Hydrodynamics. (*)

L. ONSAGER
New Haven, Conn.

It is a familiar fact of hydrodynamies, than when the « Reynolds number »
exceeds a certain critical value, which depends on the type of flow, no steady
flow is stable. The unsteady flow which occurs under these conditions calls
for statistical analysis; but early attempts in this direction encountered for-
midable difﬁculties. ‘Within the last few years, however, the most important
T ncerning the stability of laminar flow were settled by
C. C. LNy [1], and a promising start towards a quantitative theory of turbu-
lence was achieved by KoLMOGOROFF [2]. For good measure, KOLMOGOROFF’S
main result was rediscovered at least twice [3], [4]. The theories involved deal
with the mechanism of turbulent dissipation. We shall remrn to this sub]eet,
it seems logical to discuss first a di new li of to
hydrodynamics.
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ONSAGER’S VORTEX MATTER

v The idea to treat vortices as a macroscopical system goes back to Onsager

» Excellent survey of Onsager’s archive by G. L. Eyink, K. R. Sreenivasan,



RASETTI-REGGE 1975

Physica 80A (1975) 217-233 i North-Hollund Publishing Co.

VORTICES IN He I, CURRENT ALGEBRAS
AND QUANTUM KNOTS
M.RASETTI and T. REGGY
Institute for Advanced Stdy,

Princeton, New Jessey 08540, (S

Received 21 February 1975

ces in supertuid ele H, using Ditac’s

A canonical quantization scheme is developed tor xorti
technique for constrained hamiltonian sy stems. Cuunt zation introduces in the theory in natwial
way the structure of the infinite Lie algebra of incompressible flows, We argue that all the topo-
togical invariants of the vortex, considered as a Lpot, can be regarded as obscrvables of the sys-
tent. Finally unitary representations ¢f measure presersing flows on RY and current algebra are

discussed.
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CLUSTERING: CHIRAL FLOW

» Sign-like vortices of turbulent flows tend to cluster
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CLUSTERING: CHIRAL FLOW

» Sign-like vortices of turbulent flows tend to cluster

Negative 0

Positive
Vorticity

“The formation of large, isolated vortices is an ~ Red Spot: the long(?st observed
extremely common, yet spectacular vortex: after Galileo 1610
phenomenon in unsteady flow . " (Onsager)



“THE LITTLE VORTICES WHO WANTED TO PLAY"

1945 Pauling Note, 1949 Publication in Nuovo Cimento:

The little vertices who wmanbed bo nlay .

Once upen z time there were n vortlices of sirengths Ky, ... , Ky dn 2

i3
dimensional frictionlesa incompressible fluid. Thay were snclosed by a bounds
could play ring-sre. nd-thie-rosy otherwiss. The rule of that game “vas 1/
1
i

Ki dxg /bt = = 28/ oyl K3 dy; Jdb o= W/ ex
where —~pH(x), ¥1; --+ » Xn» Yo equals the energy apart from x
(which is infinite on arcount of the self-energles). The function

Llx€e LOLs? 1 .
t 5 . L ‘ . . kS
o= s o KsKe loglrss oobential of image forces;
K ’g‘}?}mrﬁf 153 el 1j) + (potential o ge I ¢

and the image forces are finite except near the boundary, --- How the vortie:
very playful like I said and they liked to distribute themselves in completel
fashion but they could not do that because they had Loo much spergy. Tou see
not 1ike molecules which have more reom in momentum-space the mors energy the
The vortices had only a finite confipuration-space. 50 when thev had more e
the average over thal space, they could not play guite the way they wanted
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“THE LITTLE VORTICES WHO WANTED TO PLAY"
1945 Pauling Note, 1949 Publication in Nuovo Cimento:

The little vortices we want to play

Once upon a time there were n vortices of strength I, ..., in a two dimensional
frictionless fluid. They were enclosed by a boundary and could play ring-around-the rosy
otherwise. The rule of that game was

Ldx;/dt =—0H/dy;; T.dy;/dt=+0H/dx;

where H equals the energy apart from additive infinite self-energies. It is something like this

H=) TTlogr;
>j
Now vortices are very playful like I said and they liked to distribute themselves in a random
fashion, but they could not do that because they had too much energy. The vortices had
only a finite configuration-space, so they can not play the way they want to.

You can figure out that there is no way to take care about much energy unless you let the
same sign to get closer together. And now you know how the little vortices arranged - they
just pushed the bigger vortices together until the big vortex has all the energy the little one
do not want, and then the little ones played ring-around-the rosy until you could not tell
which was where.



Quantized vortices in superfluid He* Monet-Carloimulation of 10° electrons of
(after Bewley et all 2006) y= % filled QH state

Feynman wave function for superfuid Laughlin FQH wave function

N N
¥~ l_[(zi —zj)%e—% >zl O~ l_[(zi —zj)”e_% ¥l

i>j i#f

r 1
Identification :  filling fraction = P magnetic field = 3 frequency of rotation
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Euler Equation of rotating fluid
u+(u-V)u=2Qxu—Vp, \Y

How does the wave function

N
L Qs 1,2
‘I’NI_[(Zi—Zj)"e 2 2l

i>j

follow from the Euler equation?

within short three slides away

cu=0



PROBLEM WITH QUANTIZATION OF HYDRODYNAMICS

Euler Equation

advection
L
u+(u-V)u=2Qxu—Vp, V-u=0

is a consequence only of Galilean invariance. It has the same form in terms of quantum
operators

The problem is to evaluate advection term
(u-vu) —(u) - v{u) =?
Lllrcl) u(x+e)ulx)
short distance cut-off depends on the flow

€ = function of u



DIGRESSION: 2D EULER HYDRODYNAMICS OF INCOMPRESSIBLE FLUID

In units of mass

Euler Equation D,u=—Vp,
Material Derivative D,=(6,+u-V)
Incompressibility V-u=0,
Vorticity w=Vxu

Vorticity is transported along the velocity field: the material derivative of the vorticity in
that flow vanishes:

Helmholtz Equation : Dw=w+u-Vw=0.
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KIRCHHOFF EQUATIONS D
ad =w+u-Vo=0.
Dt

Helmholtz (and later Kirchhoff)

N

u(z,t) =u, —iu, =—iQz+iy
i=1

z—2(t)

Kirchhoff equations: iz, =z, — Z _
Z
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Dt

Helmholtz (and later Kirchhoff)

N

u(z,t) =u, —iu, =—iQz+iy
i=1

z—2(t)

Kirchhoff equations: iz, =z, — Z _
Z




HAMILTONIAN STRUCTURE AND QUANTIZATION OF KIRCHHOFF EQUATIONS

» Kirchhoff equations iz, = 0z — Zf;} Zl([)+zj([)

» Canonical coordinates {z:, 3} = 215,



HAMILTONIAN STRUCTURE AND QUANTIZATION OF KIRCHHOFF EQUATIONS

» Kirchhoff equations iz, = 0z — Zf;] zl(t)+z}(t)

» Hamiltonian (in units of mass) A =Q, 15 T3, loglz — 3]

» Canonical coordinates {z:, 3} = 216,
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» Hamiltonian (in units of mass) A =Q, 15 T3, loglz — 3]
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HAMILTONIAN STRUCTURE AND QUANTIZATION OF KIRCHHOFF EQUATIONS

» Kirchhoff equations iz, = 0z — Zf;] Zl(t)+zj([)
» Hamiltonian (in units of mass) A =Q, 15 T3, loglz — 3]
» Canonical coordinates {z:, 3} = 2i0;
> Quantization {2, Z;}pp — [2;, 3] = 2k5;;, z; = 2h0,
» Quantum Kirchhoff equations:
Ei =P
r

ip=ho, +Q&— ) —
P i
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IDENTIFICATION WITH QUANTUM HALL STATES AND SUPERFLUID

> Quantum Kirchhoff equations: % =p;,  ip;=hd, + Q% — D %

> Stationary flow: pilw) =0 W= (z—2)" e ikl
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IDENTIFICATION WITH QUANTUM HALL STATES AND SUPERFLUID

> Quantum Kirchhoff equations: % =p;,  ip;=hd, + Q% — D ﬁ

> Stationary flow: plw)=0 w=[].( —z)Pe O Zilal

» Electrons in FQH states are identified with vortices in rotating superfluid
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IDENTIFICATION WITH QUANTUM HALL STATES AND SUPERFLUID

T

» Quantum Kirchhoff equations: z,=pi, ip; =ho, +Qz — Zj i
> Stationary flow: pilw)=0 W= —z)Pe O Zilal
» Electrons in FQH states are identified with vortices in rotating superfluid

» Identification with FQH state: Q=eB/(2c), fraction v=p"1=H/T

» Identification with superfluid: 8 = integer = 2T'/h: if ' =H, then # =2
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HYDRODYNAMICS OF VORTEX FLOW

» Kirchhoff Hamiltonian

A =0, 15 T2, loglz — 3]
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HYDRODYNAMICS OF VORTEX FLOW

» Kirchhoff Hamiltonian A =0, 15 T2, loglz — 3]
» Express in terms of density of vortices/electrons p = 21? x [vorticity]

» The (density of the) Hamiltonian (PW 2013, Can et al 2014)

JC =

N[

1
(:u?:—nTplogp)+ h(p logp — —(Vlogp)z)
967

classical part quantum correction

Entropy=effect of the gravitational anomaly

rrrrr
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CLASSICAL PART: 1960-1970

> The energy of the vortex flow diverges as log |z; — z;| at merging points. Regularization
by a typical distance between vortices £ ~ 1/,/p

loglz, — | - logt =log(1//p)

—> loglz; — 3 —»—j p(2)loglz—2|p(z)dvVdV’ + f plogtdv =
i#f
1

P (:u*:—nlplogp)dv



QUANTUM PART

» Integration over paths of Lagrangian particles (vortices)

J Dz,(t) ... Dzy(t)

» Instead integration over “collective modes”

1 &
a,HZH E 7, p(2)= E a_,z"
i=1

n>0

Large N : D2,(t)... Day(t) = e 5IP] l_[ 9a,(t) =eSPlgyp




QUANTUM PART

» Integration over paths of Lagrangian particles (vortices)

J Dz,(t) ... Dzy(t)

» Instead integration over “collective modes”

1 N
an=-20d w@=
i=1

n>0

Large N : D2,(t)... Day(t) = e 5IP] l_[ 9a,(t) =eSPlgyp

S[pl= (p logp — L(Vlogp)z) dvdt
967

quantum correction=effect of the gravitational anomaly



= %J (:u?:—nlplogp) dV+hJ (plogp—%in(vlogpy) dv



STRESS

» Once the energy is known, we can find the momentum flux tensor

r
Hij =uy; +p5ij + %Tij




STRESS

» Once the energy is known, we can find the momentum flux tensor

_ r
Hij =Wy +p6ij + %Tij

» Anomalous stress in complex coordinates (Abanov& PW 2014, Can et al, 2014-15)

1 h 1
shear =T,, = — —d,u, +—— (—— d,logp)*+3%1o )
pye 285 \“5(@logp) + 5 logp
~——
odd-viscosity Schwarzian[log p ]J=effect of grav. anomaly

r i
compression =T,; = —E(p —p)+ EA logp
—_——

trace anomaly
Trace anomaly yields the intrinsic angular momentum the flow

2
L=—-T;
Y




EFFECTS OF SHEAR AND COMPRESSION

Force acts normal to shear: (a) repelling; (b) compressing - Kelvin-like instability of the

interface; (c) shear causes compression/expansion; (d) fingering instability (PW 2001)

DA
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COUPLING WITH GEOMETRY

» Once the stress is known, we can determine effects of geometry




COUPLING WITH GEOMETRY

» Once the stress is known, we can determine effects of geometry

» Vortices are pushed to higher curvature (Klevtsov, Can et al 2014)

1 -
vorticity =p —p = S_(R_R)_ m(?)— v)AR+ ...

V=

h
T
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COUPLING WITH GEOMETRY

» Once the stress is known, we can determine effects of geometry

» Vortices are pushed to higher curvature (Klevtsov, Can et al 2014)

1 - 1
ticity =p —p = —(R—R) — 3—9v)AR+...
vorticity =p — p sn( ) 17671:2;3( )
I
y=—
r
» Fluid spins (Klevtsov& PW 2016)
hocy 1
angular momentum =L = — —R, cg=1-—3»

21 24
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SINGULAR GEOMETRY: GRAVITATIONAL ANALOG OF AHARONOV-BOHM EFFECT

Cone is a flat surface except a flux of curvature inserted through the apex.

Ho do vortices feel the curvature if they are not there? Vortices know about metric!

Singular geometry : T. Can et al, 2016,
. . 1 -
circulation = 5 x [deficit angle]

u (2—a)a

angular momentum =
12 1—a

a —deficit angle, ¢;=1—3v"!
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CHANGING GEOMETRY

What happen if the cone angle slowly
changes?

Geometric transport

current = — x [rate of change of a]

torque = f x [rate of change of A,]

_c_H(Z—a)a
712 1—a

DA
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TWISTED GEOMETRY : QUANTIZED CHARGES

Geometric singularity

T, 7T +1

- r
transferred vorticity = 5

c
angular momentum = hz_ljl



QUANTIZED ANGULAR MOMENTUM TRANSFER

Electric charge is transferred in units of |Z|

Conjecture: a quantum of angular momentum is transferred in units of




Force

BOUNDARY : FORCES EXERT BY THE FLUID TO A BOUNDARY

boundary curvature
Edge double

layer (Can, Forrester, PW 2013)

1—-y
Py R Py=1+ 4_nvn6boundary

Boundary vortex layer

DA
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Force

BOUNDARY : FORCES EXERT BY THE FLUID TO A BOUNDARY

1
Tnn_ 4y

boundary curvature
Edge double

layer (Can, Forrester, PW 2013)

1—»
Py R Py=1+ 4_nvn6boundary

Boundary vortex layer

Ovérshodt (aﬁér A. Shytov)

Do you see a boundary layer?

DA
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EDGE WAVES: BENJAMIN-ONO EQUATION PW 2011

» Motion of the boundary p+V,Ty[p]=0

— y(x)

Yy

Boundary wave



EDGE WAVES: BENJAMIN-ONO EQUATION PW 2011

y
y(x)
» Motion of the boundary p+V,Ty[p]=0 } b

Boundary wave

» (Quantum) Benjamin-Ono equation:

Waves on interface of a sharp change of density (Benjamin 1968)

5—T'V (F 24 n \Y% H)—o
p X Zp 47_,: xp -

HZEJM(M

P /
b X —x




FRACTIONALLY CHARGED SOLITONS ON THE EDGE

» Benjamin-Ono equation p—V.(5p%+ £ -V, p")=0
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. q A
Solitons = — T A o
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FRACTIONALLY CHARGED SOLITONS ON THE EDGE

» Benjamin-Ono equation p—V.(5p%+ £ -V, p")=0

» Benjamin-Ono is the only integrable equation whose solitons are quantized

. q A
Solitons = — T A o
T (x—S0)* + A

» Two branches of solitons: holes/particles propagating to the left/right;

Charge: ¢ = f pdx=—v,1




HYDRODYNAMICS OF TOPOLOGICAL FLUIDS

» Topological nature of constituencies of the vortex fluid affect the hydrodynamics



HYDRODYNAMICS OF TOPOLOGICAL FLUIDS

» Topological nature of constituencies of the vortex fluid affect the hydrodynamics

» Hydrodynamics reveales quantization through non-linear soliton motion




