From SPARC_LAB to EuPRAXIA

Massimo.Ferrario@LNF.INFN.IT

Firenze 20 February 2018

Breakdown limit?

$$E_0 = \frac{m_e c \omega_p}{e} \approx 100 [\frac{GeV}{m}] \cdot \sqrt{n_0 [10^{18} cm^{-3}]}$$

Conventional RF accelerating structures

High field ->Short wavelength->ultra-short bunches-> low charge

New EU Design Study Approved

3 years – 3 MEuro Coordinator: G. D'Auria (Elettra)

The key objective of the CompactLight Design Study is to demonstrate, through a conceptual design, the feasibility of an innovative, compact and cost effective FEL facility suited for user demands identified in the science case.

K-band RF Structures

- The collaboration during the next 5 will address 4 fundamental research efforts:
 - » Continue basic physics research, materials research frequency scaling and theory efforts.
 - » Put the foundations for advanced research on efficient RF sources.
 - » Explore the spectrum from 90 GHz to THz
 - Sources at MIT
 - Developments of suitable sources at 90 GHz
 - Developments of THz stand alone sources
 - Utilize the FACET at SLAC and AWA at ANL
 - Address the challenges of the Muon Accelerator Project (MAP)

mm-Wave structure to be tested at FACET

Modern accelerators require high quality beams:
 => High Luminosity & High Brightness
 => High Energy & Low Energy Spread

Plasma Acceleration

Surface charge density

 $\sigma = e n \delta x$

Surface electric field

$$E_x = -\sigma/\epsilon_0 = -e \, n \, \delta x/\epsilon_0$$

Restoring force

$$m\frac{d^2\delta x}{dt^2}=e\,E_x=-m\,\omega_p^{\ 2}\,\delta x$$

Plasma frequency

$$\omega_{\rm p}^{\ 2} = \frac{{\rm n} e^2}{\epsilon_0 {\rm m}}$$

Plasma oscillations

$$\delta x = (\delta x)_0 \cos\left(\omega_p t\right)$$

Plasma capillary

Courtesy of M. P. Anania, A. Biagioni, D. Di Giovenale, F. Filippi, S. Pella

Capillary Discharge

SPARC_LAB Plasma Vacuum Chamber

BELLA: BErkeley Lab Laser Accelerator

BELLA Facility: state-of-the-art 1.3 PW-laser for laser accelerator science: >42 J in <40 fs (> 1PW) at 1 Hz laser and supporting infrastructure at LBNL

Critical HEP experiments:

- 10 GeV electron beam from <1 m LPA
- Staging LPAs
- Positron acceleration

High power laser FLAME

	Energy Duration	6 J 23 fs
	Wavelength	800 nm
	Bandwidth	60/80 nm
	Spot @ focus	10 µm
	Peak Power	300 TW
	Contrast Ratio	10 ¹⁰
Final amplification stage from ~600 mJ to 6J		

Experiments at LBNL use the BELLA laser focused by a 14 m focal length off-axis paraboloid onto gas jet or capillary discharge targets

4.25 GeV beams have been obtained from 9 cm plasma channel powered by 310 TW laser pulses (15 J)

ERKELEV LAI

FELs require energy spread < 0.1 %

X-FEL based on last 1-km of existing SLAC linac

XFEL first lasing – Hamburg May 2017

Electron source and acceleration

Long undulators chain

Beam separation

Experimental hall (Single Protein Imaging)

http://lcls.slac.stanford.edu/AnimationViewLCLS.aspx

Peak power of one accelerated charge:

$$P_{l} = \frac{e^{2}}{6\pi\varepsilon_{o}c^{3}}\gamma^{4}\left\langle \dot{v}_{\perp}^{2}\right\rangle$$

Different electrons radiate indepedently hence the total power depends linearly on the number N_e of electrons per bunch:

Incoherent Spontaneous Radiation Power:

Coherent Stimulated Radiation Power:

Bunching on the scale of the wavelength:

$$P_T = N_e \frac{e^2}{6\pi\varepsilon_o c^3} \gamma^4 \left\langle \dot{v}_{\perp}^2 \right\rangle$$

$$P_T = \frac{N_e^2 e^2}{6\pi\varepsilon_o c^3} \gamma^4 \left\langle \dot{v}_{\perp}^2 \right\rangle$$

Radiation Simulator – T. Shintake, @ http://www-xfel.spring8.or.jp/Index.htm

A Free Electron Laser is a device that converts a fraction of the electron kinetic energy into coherent radiation via a collective instability in a long undulator

(Tunability - Harmonics)

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

EuPRAXIA Design Study started on Novemebr 2015 Approved as HORIZON 2020 INFRADEV, 4 years, 3 M€ Coordinator: Ralph Assmann (DESY)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

http://eupraxia-project.eu

Consortium

16 Participants

Motivations

PRESENT EXPERIMENTS

Demonstrating 100 GV/m routinely

Demonstrating **GeV** electron beams

Demonstrating basic **quality**

EuPRAXIA INFRASTRUCTURE

Engineering a high quality, compact plasma accelerator

5 GeV electron beam for the 2020's

Demonstrating user readiness

Pilot users from FEL, HEP, medicine, ...

PRODUCTION FACILITIES

Plasma-based **linear** collider in 2040's

Plasma-based **FEL** in 2030's

Medical, industrial applications soon

Courte sy R. Assn

Electron beam parameters at the undulator

Quantity	Symbol [Unit of Meas.]	Target parameters	
Energy	E [GeV]	1 - 5	
Charge	Q [pC]	30	
Bunch length (FWHM)	t _{FWHM} [fs]	10	
Peak current	I [kA]	3	
Repetition rate	f [Hz]	10	
# of bunches	Ν	1	
Transverse Norm. emittance	$arepsilon_{n,x}, arepsilon_{n,y}$ [mm mrad]	<1	
Total energy spread	σ_E/E [%]	1	
Slice Norm. emittance	$arepsilon_{n,x}, arepsilon_{n,y} \ [{ m mm mrad}]$	<<1	
Slice energy spread	$\sigma_{E,s}/E$ [%]	~0.1	
Slice length	L _{Slice} [µm]	0.75 - 0.12	

P. A. Walker (DESY) - IPAC 2017 - Copenhagen, 16th May 2017

Participating Institutions

EUPRAXIA

Location of possible sites within EU

EuPRAXIA site studies:

- Design study is site ٠ independent
- Five possible sites have ٠ been discussed so far
- We invite the ٠ suggestions of additional sites

Central Laser Facility Didcot, United Kingdom

Eli Beamlines Prague, Czech Republic

EuPRAXIA@SPARC_LAB

- Candidate LNF to host EuPRAXIA (1-5 GeV)
- FEL user facility (1 GeV 3nm)
- Advanced Accelerator Test facility (LC) + CERN

- 500 MeV by RF Linac + 500 MeV by Plasma (LWFA or PWFA)
- 1 GeV by X-band RF Linac only
- Final goal compact 5 GeV accelerator

SPARC_LAB HB photo- injector

X-band Linac

Plasma WakeField Acceleration – External Injection

Photo of capillary discharge at SPARC_LAB

Undulators

Photos of KYMA Δ udulator at SPARC_LAB: $\lambda {=} 1.4$ cm, K1

Start-to-end simulations with particle driven PWFA

High power laser FLAME

	Energy Duration	6 J 23 fs
	Wavelength	800 nm
	Bandwidth	60/80 nm
	Spot @ focus	10 µm
	Peak Power	300 TW
	Contrast Ratio	10 ¹⁰
Final amplification stage from ~600 mJ to 6J		

High power laser

- Laşer wakefield acceleration in plasma
 - External injection
 - Self injection
- Protons (ions) acceleration
- Neutron source
- Compton scattering

X-ray/

beam

The FEL Applications

X-Rays have opened the Ultra-Small World X-FELs open the Ultra-Small and Ultra-Fast Worlds

Ultra-Small

Ultra-Fast

Photon beam line

Defininig aperture

Coherent Imaging at EuPRAXIA@SPARC_LAB

 2 key issues: brilliance and coherence of the FEL radiation
 1 experimental station performing coherent imaging experiments
 Many applications, ranging from biological systems to condensed matter physics

Water Window Coherent Imaging of biological systems

Energy region between oxygen and carbon K-edge 2D and 3D images of biological samples: viruses, cells, organelles, protein fibrils...

Condensed matter Cluster and nanoparticles Laser ablation plasma Metal-insulating transitions Colossal magnetoresistance phenomena Pump-probe in stimulated Raman or four wave mixing spectroscopy

Colossal Magnetoresistance 3d Orbital Types

Courtesy F. Stellato