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1827 – irregular motion of granules of pollen in liquids
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• Deutsch: Did Robert Brown observe Brownian Motion: probably not Sci Am 256 20 (1991)• Deutsch: Did Robert Brown observe Brownian Motion: probably not, Sci. Am. 256, 20 (1991)
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Brownian motion

Robert Brown (1773-1858)

Incidentally, Robert Brown was also the first to note the ubiquitous
nature of a part of eukaryotic cells which he named the ”cell nucleus”.

In 1827, the botanist Robert Brown published a study
”A brief account of microscopical observations on the 
particles contained in the pollen of plants...”, where we
reported his observations of irregular, jittery motion of
small (clay) particles in pollen grains.

He repeated the same experiment with particles of dust, 
showing that the motion could not be due to the pollen 
particles being alive.

Although several people worked on this
phenomenon over the years, a proper physical
explanation of it had to wait for almost 80 years.

An example of Brownian motion of a particle, recorded for three different resolutions
in time (time steps).
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Jan Ingen‐Housz (1730‐1799)Jan Ingen Housz (1730 1799)
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To see clearly how one can deceive one’s mind on this point 
if one is not careful, one has only to place a drop of alcohol 
in the focal point of a microscope and introduce a little finelyin the focal point of a microscope and introduce a little finely 
ground charcoal therein, and one will see these corpuscules 

in a confused, continuous and violent  motion, as if they 
were animalcules which move rapidly around. 
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W. Sutherland (1858-1911) A. Einstein (1879-1955) M. Smoluchowski 

(1872-1917)
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5. Non-Markovian diffusion processes in Minkowski spacetime

The preceding section has focused on relativistic Brownian motions in phase space. In the remainder we will discuss
relativistic diffusion models in Minkowski spacetime, i.e., continuous relativistic stochastic processes that do not explicitly
depend on the momentum coordinate. On the one hand, such spacetime processes may be constructed, for example, from
a Brownian motion process in phase space by integrating out the momentum coordinates. As a result of this averaging
procedure, the reduced process for the position coordinate will be non-Markovian. Alternatively, one can try to derive or
postulate a relativistic diffusion equation and/or diffusion propagators in spacetime on the basis of microscopic models [10,
28,153,366] or plausibility considerations [23]. Regardless of the approach adopted, in order to comply with the principles
of special relativity, the resulting spacetime process must be non-Markovian, in accordance with the results of Dudley
(Theorem11.3 in [333]) andHakim (Proposition 2 in [338]). Roughly speaking, thismeans that any relativistically acceptable
generalization of the classical diffusion equation (1) should be of at least second order in the time coordinate.

The construction and analysis of relativistic diffusion models in Minkowski spacetime poses an interesting problem
in its own right. Additionally, the investigation of these processes becomes relevant in view of potential analogies with
relativistic quantum theory [383,391], similar to the analogy between Schrödinger’s equation and the diffusion equation (1)
in the nonrelativistic case [501,502]. The present section intends to provide an overview over classical relativistic diffusion
models that have been discussed in the literature [10,23,27–29,337,366,367,379–381,391]. For this purpose, we first recall
basic properties of the Wiener (Gaussian) process, which constitutes the standard paradigm for nonrelativistic diffusions
in position space (Section 5.1). Subsequently, relativistic generalizations of the nonrelativistic diffusion equation (1) and/or
the nonrelativistic Gaussian diffusion propagator will be discussed [23].

5.1. Reminder: Nonrelativistic diffusion equation

We start by briefly summarizing a few relevant facts about the standard nonrelativistic diffusion equation [287,339,422,
502]

∂

∂t
" = D ∇2", t ≥ t0, (194)

where D > 0 denotes the spatial diffusion constant, and "(t, x) ≥ 0 the one-particle PDF for the particle positions
x ∈ Rd at time t . Within classical diffusion theory, Eq. (194) is postulated to describe the (overdamped) random motion
of a representative particle in a fluctuating environment (heat bath). In particular, Eq. (194) refers to the rest frame of the
bath.

There exist several well-known ways to motivate or derive the phenomenological diffusion equation (194) by means of
microscopic models (see, e.g., [287,339,422,502]). With regard to our subsequent discussion of relativistic alternatives, it is
useful to briefly consider a ‘hydrodynamic’ derivation [503], which starts from the continuity equation

∂

∂t
"(t, x) = −∇ · j(t, x), (195)

where j(t, x) denotes the current density vector. In order obtain a closed equation for the density ", the current j has to be
expressed in terms of ". One way of doing this is to postulate the following rather general ansatz {cf. Eq. (2.81) in [503]}

j(t, x) = −∇
∫ t

t0
dt ′ K(t − t ′) "(t ′, x), (196)

where, in general, K may be a memory kernel. However, considering for the moment the memory-less kernel function74

KF(t − t ′) := 2D δ(t − t ′), (197)
one finds

jF(t, x) = −D ∇"(t, x). (198)
Upon inserting this expression into the continuity equation (195), we recover the classical diffusion equation (194).

Now, it has been well-known for a long time that the diffusion equation (194) is in conflict with the postulates of special
relativity. To briefly illustrate this, we specialize to simplest case of d = 1 space dimensions, where ∇2 = ∂2/∂x2. In this
case, the propagator of Eq. (194) at times t > t0 is given by the Gaussian

p(t, x|t0, x0) =
[

1
4π D(t − t0)

]1/2

exp
[
− (x − x0)2

4D(t − t0)

]
. (199)

The propagator (199) represents the solution of Eq. (194) for the initial condition
"(t0, x) = δ(x − x0).

That is, if X(t) denotes the random path of a particle with fixed initial position X(t0) = x0, then p(t, x|t0, x0)dx gives

74 The factor ‘2’ in Eq. (197) appears because of the convention
∫ t
t0
dt ′ δ(t − t ′)f (t ′) = f (t)/2.

194 J Masoliver and G H Weiss

Figure 1. The development of the one-dimensional
solution to the telegrapher’s equation as a function of
time, showing the evolution from wave-like behaviour to
diffusive behaviour as well as the delta functions at the
extremes of p(x , t). The delta function contributions at
the endpoints are not included in the figure.

that the appropriate solution is a constant, µ1(t) = x0.
In a similar fashion we find that the second moment is
the solution to the equation

d2µ2

dt2
+ 1

T

dµ2

dt
= 2v2 (36)

subject to the initial conditions µ2(0) = x20 and
dµ2/dt |t=0 = 0. Again this simple differential equation
is readily solved, the solution being

µ2(t) = x20 + 2v2T [t − T (1− e−t/T )]. (37)

When t " T this becomes µ2(t) ≈ x20 + v2t2 consistent
with a wave propagating at uniform speed. In the
opposite limit, t $ T , µ2(t) ≈ 2v2T t which is the
result obtained from a diffusion process.

4. Boundary conditions

It is well known that the boundary condition for the
diffusion equation which corresponds to an absorbing
boundary is p(!, t) = 0, where ! consists of all points

on the boundary. Likewise the reflecting boundary
condition requires that the normal component of the flux
into the boundary should be equal to zero. Because
the property of persistence inherent in the telegrapher’s
equation is analogous to the physical property of
momentum it is necessary to take into account the
direction in which the particle is travelling in deriving
boundary conditions. The analysis directed at finding an
exact form of the resulting boundary conditions in one
dimension is based on an examination of the functions
an(j) and bn(j) in equations (13) and (14).
To determine the form of the boundary condition it

is sufficient to consider a single point j = 0 and a
persistent random walk on the half-line j ! 0, thereafter
passing to the continuum limit. We can derive several
types of boundary conditions by assuming that when a
random walker reaches j = 0 it is either trapped there
with probability θ , provided that it is moving towards
the exterior of the line segment, or else it is reflected
back to the point from which it came with probability
1 − θ . The case of θ %= 0 or 1 corresponds to what
is termed in chemical physics the radiation boundary
condition. Suppose that the particle is reflected back to
j = 1 at step n + 1. At this step it must have come
from j = 0, and at the immediately preceding step it
must have been at j = 1. Hence we have the boundary
condition

an+1(1) = (1− θ)bn(0) (38)

or, in the continuum limit a(0, t) = (1 − θ)b(0, t).
However, it is not this boundary condition that is
interesting but rather the boundary condition to be
imposed on the function p(x, t |x0). At the boundary
equation (38) implies that

p(0, t) = a(0, t) + b(0, t) = (2− θ)b(0, t). (39)

We also have the relation

a(0, t) − b(0, t) = θb(0, t) = θ

2− θ
p(0, t). (40)

We finally return to equations (17) and (18),
subtracting the latter from the former. In this way we
find that a − b is related to the total density by

∂

∂t
(a − b) = −v

∂p

∂x
− 1

T
(a − b), (41)

which is to be evaluated at x = 0. The combination
of equations (40) and (41) yields a single (radiation)
boundary condition, [7], for the function p(x, t |x0):

v
∂p

∂x

∣∣∣∣
x=0

= θ

2− θ

(
∂

∂t
+ 1

T

)
p

∣∣∣∣
x=0

. (42)

The two most common boundary conditions correspond
to absorption and reflection. The boundary condition in
the case of trapping requires setting θ equal to unity.
The resulting boundary condition is quite unlike that
in the case of the diffusion equation, since it includes
derivatives with respect to both t and x. Parenthetically
we note that the trapping boundary condition is also
equivalent to setting a(0, t) = 0 which is understandable
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Similarly, the singular diffusion fronts predicted by Eq. (209) represent a source of concern if one wishes to adopt the
telegraph equation (206) as amodel for particle transport in a randommedium.While these singularities may be acceptable
in the case of photon diffusion [371–375], they seem unrealistic for massive particles, because such fronts would imply that
a finite fraction of particles carries a huge amount of kinetic energy (much larger thanmc2). In view of these shortcomings, it
appears reasonable to explore other constructions of relativistic diffusion processes [23,390]. In the next part wewill discuss
a different approach [23] that may provide a viable alternative to the solutions of the telegraph equation.

5.3. Relativistic diffusion propagator

In principle, one can distinguish two different routes towards constructing relativistic diffusion processes: One can either
try to find an acceptable relativistic diffusion equation, or one can focus directly on the structure of the diffusion propagator.
In the present part we shall consider the latter approach [23]. The basic idea is to rewrite the nonrelativistic diffusion
propagator (199) in such a form that its relativistic generalization follows in a straightforwardmanner. This can be achieved
be re-expressing Eq. (199) in terms of an integral-over-actions.

For this purpose, we consider a nonrelativistic particle traveling from the event x̄0 = (t0, x0) to x̄ = (t, x) and assume
that the particle can experience multiple scatterings on its way, and that the velocity is approximately constant between
two successive scattering events. Then the total action (per mass) required along the path is given by

a(x̄|x̄0) = 1
2

∫ t

t0
dt ′ v(t ′)2, (213)

where the velocity v(t ′) is a piecewise constant function, satisfying

x = x0 +
∫ t

t0
dt ′ v(t ′). (214)

Clearly, the nonrelativistic action (213) becomes minimal for the deterministic (direct) path, i.e., if the particle does not
collide at all. In this case, it moves with constant velocity v(t ′) ≡ (x − x0)/(t − t0) for all t ′ ∈ [t0, t], yielding the smallest
possible action value

a−(x̄|x̄0) = (x − x0)2

2(t − t0)
. (215)

On the other hand, to match the boundary conditions it is merely required that the mean velocity equals (x − x0)/(t − t0).
Consequently, in the nonrelativistic case, the absolute velocity of a particle may become arbitrarily large during some
intermediate time interval [t ′, t ′′] ⊂[ t0, t]. Hence, the largest possible action value is a+(x̄, x̄0) = +∞. These considerations
put us in the position to rewrite the Wiener propagator (199) as an integral-over-actions:

p(x̄|x̄0) ∝
∫ a+(x̄|x̄0)

a−(x̄|x̄0)
da exp

(
− a

2D

)
, (216a)

supplemented by the normalization condition

1 =
∫

dx p(x̄|x̄0). (216b)

The representation (216)may be generalized to the relativistic case in a straightforwardmanner: Onemerely needs to insert
the corresponding relativistic expressions into the boundaries of the integral (216a). A commonly considered relativistic
generalization of Eq. (213), based on the particle’s proper time, reads [6]

a(x̄|x̄0) = −
∫ t

t0
dt ′

[
1 − v(t ′)2

]1/2
. (217)

Analogous to the nonrelativistic case, the relativistic action (217) assumes its minimum a− for the deterministic (direct)
path from x0 to x, characterized by a constant velocity v(t ′) ≡ (x − x0)/(t − t0). One explicitly obtains

a−(x̄|x̄0) = −
[
(t − t0)2 − (x − x0)2

]1/2
, (218a)

i.e., a− is the negative Minkowski distance of the two spacetime events x̄0 and x̄. The maximum action value a+ = 0 is
realized for particles that move at light speed.79 Hence, the transition PDF for the relativistic generalization of the Wiener
process reads

p(x̄|x̄0) = N −1
{
exp

[
−a−(x̄, x̄0)

2D

]
− 1

}
, (218b)

if (x − x0)2 ≤ (t − t0)2, and p(x̄|x̄0) ≡ 0 otherwise, with a− determined by Eq. (218a).

79 In general, particles must undergo reflections in order to match the spatial boundary conditions.
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that point on, nonrelativistic statistical mechanics emerges without much difficulty [287,288]. Unfortunately, the situation
becomes significantlymore complicated in the relativistic case:Due to their finite propagation speed, relativistic interactions
should be modeled by means of fields that can exchange energy with the particles [6]. These fields add an infinite number
of degrees of freedom to the particle system. Eliminating the field variables from the dynamical equations may be possible
in some cases, but this procedure typically leads to retardation effects, i.e., the particles’ equations of motions become non-
local in time [220,221,244,245,249,250]. Thus, in special relativity it is usually very difficult or even impossible to develop a
consistent field-free Hamilton formalism of interacting particles.

In spite of the difficulties impeding a rigorous treatment of classical relativistic many-particle systems, considerable
progresswasmade during the second half of the past century in constructing an approximate relativistic kinetic theory [167,
225,255,289–309] based on relativistic Boltzmann equations for the one-particle phase space probability density functions
(PDFs).9 From such a kinetic theory, it is only a relatively small step to formulating a theory of relativistic Brownian motion
processes in terms of Fokker–Planck equations and Langevin equations. While the relativistic Boltzmann equation [311,
312] is a nonlinear partial integro-differential equation for the PDF, Fokker–Planck equations are linear partial differential
equations and, therefore, can be more easily solved or analyzed [73].

The present article focuses primarily on relativistic stochastic processes that are characterized by linear evolution
equations for their respective one-particle (transition) PDFs. The corresponding phenomenological theory of relativistic
Brownian motion and diffusion processes has experienced considerable progress during the past decade, with applications
in various areas of high-energy physics [315–322] and astrophysics [323–327]. From a general perspective, relativistic
stochastic processes provide a useful approach whenever one has to model the quasi-random behavior of relativistic
particles in a complex environment. Therefore, it may be expected that relativistic Brownian motion and diffusion concepts
will play an increasingly important role in future investigations of, e.g., thermalization and relaxation processes in
astrophysics [323–326] or high-energy collision experiments [315,316,318,319,328,329].

1.2. Relativistic diffusion processes: Problems and general strategies

According to our knowledge, the first detailed mathematical studies on relativistic diffusion processes were performed
independently by Łopuszaǹski [330], Rudberg [331], and Schay [332] between 1953 and 1961. In the 1960s and 70s their
pioneering work was further elaborated by Dudley who published a series of papers [333–336] that aimed at providing
an axiomatic approach to Lorentz invariant Markov processes [74] in phase space. Independently, a similar program was
pursued by Hakim [220–222,337,338], whose insightful analysis helped to elucidate the conceptual subtleties of relativistic
stochastic processes [338]. Dudley (Theorem 11.3 in [333]) and Hakim (Proposition 2 in [338]) proved the non-existence of
nontrivial10 Lorentz invariant Markov processes in Minkowski spacetime, as already suggested by Łopuszaǹski [330]. This
fundamental result implies that it is difficult to find acceptable relativistic generalizations of the well-known nonrelativistic
diffusion equation [287,339]

∂

∂t
" = D ∇2", (1)

where D > 0 is the diffusion constant and "(t, x) ≥ 0 the PDF for the particle positions x ∈ Rd at time t . In order to
circumvent this ‘no-go’ theorem for relativistic Markov processes in spacetime, one usually adopts either of the following
two strategies11:
• One considers non-Markovian diffusion processes X(t) in Minkowski spacetime [10,23,365–367].
• One constructs relativistically acceptable Markov processes in phase space by considering not only the position

coordinate X(t) of the diffusing particle, but also its momentum coordinate P(t) [11–22,24,26,31,32,220–222,332–338].

1.2.1. Non-Markovian diffusion models in Minkowski spacetime
A commonly considered ‘relativistic’ generalization of Eq. (1) is the telegraph equation [10,365–367]
12

τv

∂2

∂t2
" + ∂

∂t
" = D ∇2", (2)

aimed at constructing a relativistic quantum theory for interactingmany-particle systems [250–253]. For a detailed discussion of relativistic many-particle
theory, we refer to the insightful considerations in the original papers of Van Dam andWigner [249,250] and Hakim [220–222,224] as well as to the recent
review by Hakim and Sivak [286].
9 Comprehensive introductions to relativistic Boltzmann equations can be found in the textbooks by Stewart [310], de Groot et al. [311], and Cercignani

and Kremer [312], or also in the reviews by Ehlers [313] and Andréasson [314].
10 A diffusion process is considered as ‘nontrivial’ if a typical path has a non-constant, non-vanishing velocity.
11 The mathematical interest in relativistic diffusion processes increased in the 1980s and 1990s, when several authors [340–362] considered the
possibility of extending Nelson’s stochastic quantization approach [363] to the framework of special relativity. These studies, although interesting from a
mathematical point of view, appear to have relatively little physical relevance because Nelson’s stochastic dynamics [363] fails to reproduce the correct
quantum correlation functions even in the nonrelativistic case [364].
12 Masoliver and Weiss [10] discuss several possibilities of deriving Eq. (2) from different underlying models.

J Masoliver & G H Weiss
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Similarly, the singular diffusion fronts predicted by Eq. (209) represent a source of concern if one wishes to adopt the
telegraph equation (206) as amodel for particle transport in a randommedium.While these singularities may be acceptable
in the case of photon diffusion [371–375], they seem unrealistic for massive particles, because such fronts would imply that
a finite fraction of particles carries a huge amount of kinetic energy (much larger thanmc2). In view of these shortcomings, it
appears reasonable to explore other constructions of relativistic diffusion processes [23,390]. In the next part wewill discuss
a different approach [23] that may provide a viable alternative to the solutions of the telegraph equation.

5.3. Relativistic diffusion propagator

In principle, one can distinguish two different routes towards constructing relativistic diffusion processes: One can either
try to find an acceptable relativistic diffusion equation, or one can focus directly on the structure of the diffusion propagator.
In the present part we shall consider the latter approach [23]. The basic idea is to rewrite the nonrelativistic diffusion
propagator (199) in such a form that its relativistic generalization follows in a straightforwardmanner. This can be achieved
be re-expressing Eq. (199) in terms of an integral-over-actions.

For this purpose, we consider a nonrelativistic particle traveling from the event x̄0 = (t0, x0) to x̄ = (t, x) and assume
that the particle can experience multiple scatterings on its way, and that the velocity is approximately constant between
two successive scattering events. Then the total action (per mass) required along the path is given by

a(x̄|x̄0) = 1
2

∫ t

t0
dt ′ v(t ′)2, (213)

where the velocity v(t ′) is a piecewise constant function, satisfying

x = x0 +
∫ t

t0
dt ′ v(t ′). (214)

Clearly, the nonrelativistic action (213) becomes minimal for the deterministic (direct) path, i.e., if the particle does not
collide at all. In this case, it moves with constant velocity v(t ′) ≡ (x − x0)/(t − t0) for all t ′ ∈ [t0, t], yielding the smallest
possible action value

a−(x̄|x̄0) = (x − x0)2

2(t − t0)
. (215)

On the other hand, to match the boundary conditions it is merely required that the mean velocity equals (x − x0)/(t − t0).
Consequently, in the nonrelativistic case, the absolute velocity of a particle may become arbitrarily large during some
intermediate time interval [t ′, t ′′] ⊂[ t0, t]. Hence, the largest possible action value is a+(x̄, x̄0) = +∞. These considerations
put us in the position to rewrite the Wiener propagator (199) as an integral-over-actions:

p(x̄|x̄0) ∝
∫ a+(x̄|x̄0)

a−(x̄|x̄0)
da exp

(
− a

2D

)
, (216a)

supplemented by the normalization condition

1 =
∫

dx p(x̄|x̄0). (216b)

The representation (216)may be generalized to the relativistic case in a straightforwardmanner: Onemerely needs to insert
the corresponding relativistic expressions into the boundaries of the integral (216a). A commonly considered relativistic
generalization of Eq. (213), based on the particle’s proper time, reads [6]

a(x̄|x̄0) = −
∫ t

t0
dt ′

[
1 − v(t ′)2

]1/2
. (217)

Analogous to the nonrelativistic case, the relativistic action (217) assumes its minimum a− for the deterministic (direct)
path from x0 to x, characterized by a constant velocity v(t ′) ≡ (x − x0)/(t − t0). One explicitly obtains

a−(x̄|x̄0) = −
[
(t − t0)2 − (x − x0)2

]1/2
, (218a)

i.e., a− is the negative Minkowski distance of the two spacetime events x̄0 and x̄. The maximum action value a+ = 0 is
realized for particles that move at light speed.79 Hence, the transition PDF for the relativistic generalization of the Wiener
process reads

p(x̄|x̄0) = N −1
{
exp

[
−a−(x̄, x̄0)

2D

]
− 1

}
, (218b)

if (x − x0)2 ≤ (t − t0)2, and p(x̄|x̄0) ≡ 0 otherwise, with a− determined by Eq. (218a).

79 In general, particles must undergo reflections in order to match the spatial boundary conditions.
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Similarly, the singular diffusion fronts predicted by Eq. (209) represent a source of concern if one wishes to adopt the
telegraph equation (206) as amodel for particle transport in a randommedium.While these singularities may be acceptable
in the case of photon diffusion [371–375], they seem unrealistic for massive particles, because such fronts would imply that
a finite fraction of particles carries a huge amount of kinetic energy (much larger thanmc2). In view of these shortcomings, it
appears reasonable to explore other constructions of relativistic diffusion processes [23,390]. In the next part wewill discuss
a different approach [23] that may provide a viable alternative to the solutions of the telegraph equation.

5.3. Relativistic diffusion propagator

In principle, one can distinguish two different routes towards constructing relativistic diffusion processes: One can either
try to find an acceptable relativistic diffusion equation, or one can focus directly on the structure of the diffusion propagator.
In the present part we shall consider the latter approach [23]. The basic idea is to rewrite the nonrelativistic diffusion
propagator (199) in such a form that its relativistic generalization follows in a straightforwardmanner. This can be achieved
be re-expressing Eq. (199) in terms of an integral-over-actions.

For this purpose, we consider a nonrelativistic particle traveling from the event x̄0 = (t0, x0) to x̄ = (t, x) and assume
that the particle can experience multiple scatterings on its way, and that the velocity is approximately constant between
two successive scattering events. Then the total action (per mass) required along the path is given by

a(x̄|x̄0) = 1
2

∫ t

t0
dt ′ v(t ′)2, (213)

where the velocity v(t ′) is a piecewise constant function, satisfying

x = x0 +
∫ t

t0
dt ′ v(t ′). (214)

Clearly, the nonrelativistic action (213) becomes minimal for the deterministic (direct) path, i.e., if the particle does not
collide at all. In this case, it moves with constant velocity v(t ′) ≡ (x − x0)/(t − t0) for all t ′ ∈ [t0, t], yielding the smallest
possible action value

a−(x̄|x̄0) = (x − x0)2

2(t − t0)
. (215)

On the other hand, to match the boundary conditions it is merely required that the mean velocity equals (x − x0)/(t − t0).
Consequently, in the nonrelativistic case, the absolute velocity of a particle may become arbitrarily large during some
intermediate time interval [t ′, t ′′] ⊂[ t0, t]. Hence, the largest possible action value is a+(x̄, x̄0) = +∞. These considerations
put us in the position to rewrite the Wiener propagator (199) as an integral-over-actions:

p(x̄|x̄0) ∝
∫ a+(x̄|x̄0)

a−(x̄|x̄0)
da exp

(
− a

2D

)
, (216a)

supplemented by the normalization condition

1 =
∫

dx p(x̄|x̄0). (216b)

The representation (216)may be generalized to the relativistic case in a straightforwardmanner: Onemerely needs to insert
the corresponding relativistic expressions into the boundaries of the integral (216a). A commonly considered relativistic
generalization of Eq. (213), based on the particle’s proper time, reads [6]

a(x̄|x̄0) = −
∫ t

t0
dt ′

[
1 − v(t ′)2

]1/2
. (217)

Analogous to the nonrelativistic case, the relativistic action (217) assumes its minimum a− for the deterministic (direct)
path from x0 to x, characterized by a constant velocity v(t ′) ≡ (x − x0)/(t − t0). One explicitly obtains

a−(x̄|x̄0) = −
[
(t − t0)2 − (x − x0)2

]1/2
, (218a)

i.e., a− is the negative Minkowski distance of the two spacetime events x̄0 and x̄. The maximum action value a+ = 0 is
realized for particles that move at light speed.79 Hence, the transition PDF for the relativistic generalization of the Wiener
process reads

p(x̄|x̄0) = N −1
{
exp

[
−a−(x̄, x̄0)

2D

]
− 1

}
, (218b)

if (x − x0)2 ≤ (t − t0)2, and p(x̄|x̄0) ≡ 0 otherwise, with a− determined by Eq. (218a).

79 In general, particles must undergo reflections in order to match the spatial boundary conditions.
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Similarly, the singular diffusion fronts predicted by Eq. (209) represent a source of concern if one wishes to adopt the
telegraph equation (206) as amodel for particle transport in a randommedium.While these singularities may be acceptable
in the case of photon diffusion [371–375], they seem unrealistic for massive particles, because such fronts would imply that
a finite fraction of particles carries a huge amount of kinetic energy (much larger thanmc2). In view of these shortcomings, it
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Fig. 11. Transition PDF !(t, x) = p(t, x|0, 0) for the one-dimensional (d = 1) relativistic diffusion process (218) at different times t (measured in units of
D/c2). At time t = t0 = 0, the function !(t, x) reduces to a δ-function centered at x0 = 0. In contrast to the nonrelativistic diffusion propagator, cf. Fig. 10,
the PDF (218) vanishes outside of the light cone.

Fig. 12. Comparison of the mean square displacements
〈
X2(t)

〉
, divided by 2Dt , for the one-dimensional (d = 1) nonrelativistic Wiener process (199) and

its relativistic generalization from Eq. (218) with initial condition (t0, x0) = (0, 0).

The relativistic diffusion process described by Eq. (218) is non-Markovian, i.e., it does not fulfill Chapman–Kolmogoroff
criterion (200). The functional form of the propagator (218b) remains the same for higher space dimensions d > 1. The
normalization constants Nd for d = 1, 2, 3 read

Nd = N ′
d − ud

d
Od, (219)

where u := t − t0, Od = 2πd/2/Γ (d/2) is surface area of the d-dimensional unit sphere, and N ′
d can be expressed in terms

of modified Bessel functions of the first kind In and modified Struve functions Lk [486], as

N ′
1 = u π [I1(χ) + L−1(χ)] , (220a)

N ′
2 = u2 2π

χ2 [1 + (χ − 1) exp(χ)] , (220b)

N ′
3 = u3 2π2

χ2 {χ [I2(χ) + L0(χ)] − 2L1(χ)} , (220c)

with χ = u/(2D).
In contrast to the solution (209) of the telegraph equation, the propagator (218b) vanishes continuously at the diffusion

fronts. Fig. 11 depicts the PDF !(t, x) = p(t, x|0, 0) of the diffusion process (218) for the one-dimensional case d = 1 at
different times t . The corresponding mean square displacement is plotted in Fig. 12 (dashed curve).

It is also interesting to note that the PDF (216) is a special case of a larger class of diffusion processes, defined by

pw(x̄|x̄0) = N [w]−1
∫ a+(x̄|x̄0)

a−(x̄|x̄0)
da w(a), (221)

wherew(a) ≥ 0 is a weighting function, andN [w] the time-dependent normalization constant. In particular, Eq. (221)may
be viewed as a path integral definition in the following sense: Physically permissible paths from x̄0 to x̄ have action values
(per mass) a in the range [a−, a+]. Grouping the different paths together according to their action values, one may assign to
each such class of paths, denoted byC(a; x̄, x̄0), the statistical weightw(a). The integral (221) can then be read as an integral
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Fig. 10. Spreading of the Gaussian PDF !(t, x) = p(t, x|0, 0) from Eq. (199) at different times t , where t is measured in units of D/c2. At initial time
t = t0 = 0, the PDF corresponds to a δ-function centered at the origin.

the probability that the particle is found in the infinitesimal volume element [x, x + dx] at time t > t0. As evident from
Eq. (199), for each t > t0 there is a small, but non-vanishing probability that the particle may be observed at distances
|x − x0| > c(t − t0), where c = 1 is the speed of light in natural units. The evolution of the nonrelativistic Gaussian PDF
from Eq. (199) is depicted in Fig. 10.

It is worthwhile to summarize a few essential properties of Eqs. (194) and (199): Eq. (194) is a linear parabolic partial
differential equation. Due to the linearity,more general solutionsmay be constructed by superpositioning, i.e., by integrating
the solution (199) over some given initial PDF !0(x0). Eq. (194) describes a Markov process which means that the transition
PDF (199) satisfies the Chapman–Kolmogoroff criterion

p(t, x|t0, x0) =
∫

R
dx1 p(t, x|t1, x1) p(t1, x1|t0, x0) (200)

for all t1 ∈ (t0, t). The corresponding diffusion process X(t) can be characterized in terms of the following SDE:

dX(t) = (2D)1/2 ∗ dB(t), X(t0) = x0, (201)
where B(t) is a standard Wiener process as defined in Section 2.1.2. Formally, Eq. (201) may be obtained from the Langevin
equations (22) of the classical Ornstein–Uhlenbeck process with F ≡ 0 as follows: First we rewrite Eq. (22b) as

dV (t)
α

= −Vdt +
(

2D0

M2α2

)1/2

∗ dB(t). (202)

Upon letting α → ∞ and D0 → ∞ such that D = D0/(αM)2 remains constant, the lhs. of Eq. (202) should become
negligible. Then, by making use of dX = Vdt , Eq. (201) is recovered.75 This limiting procedure defines the so-called
overdamped regime of the Ornstein–Uhlenbeck process. The mean square displacement of the overdamped process (201)
is given by [287]

〈
[X(t) − X(t0)]2

〉
:=

∫
dx (x − x0)2 p(t, x|t0, x0)

= 2D (t − t0), (203)
qualitatively similar to the asymptotic behavior of the classical Ornstein–Uhlenbeck process; cf. Eq. (25). Finally, we note
that the solution of Eq. (194) with initial condition

!(t0, x) ≡ !0(x), (204)
can be expressed in terms of the Feynman–Kac formula [74,76]

!(t, x) =
〈
!0

(
x + (2D)1/2B(t)

)〉
, (205)

where 〈 · 〉 indicates an averagewith respect to theWienermeasure of the standardWiener processB(t)with initial condition
B(t0) = 0. Equation (205) yields an efficient Monte-Carlo simulation scheme for computing the solutions of the diffusion
equation (194) for a broad class of initial distributions !0.

5.2. Telegraph equation

The problem of constructing continuous diffusion models which, in contrast to the classical nonrelativistic equations
(194) and (199), avoid superluminal velocities, has attracted considerable interest over the past years [10,23,27–29,327,337,
366,367,379–381,391]. Nonetheless, it seems fair to say that a commonly accepted solution is still outstanding. Apart from

75 Debbasch and Rivet [12] discuss the difficulties that arise when attempting a similar reduction for the relativistic Ornstein–Uhlenbeck process.
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Similarly, the singular diffusion fronts predicted by Eq. (209) represent a source of concern if one wishes to adopt the
telegraph equation (206) as amodel for particle transport in a randommedium.While these singularities may be acceptable
in the case of photon diffusion [371–375], they seem unrealistic for massive particles, because such fronts would imply that
a finite fraction of particles carries a huge amount of kinetic energy (much larger thanmc2). In view of these shortcomings, it
appears reasonable to explore other constructions of relativistic diffusion processes [23,390]. In the next part wewill discuss
a different approach [23] that may provide a viable alternative to the solutions of the telegraph equation.

5.3. Relativistic diffusion propagator

In principle, one can distinguish two different routes towards constructing relativistic diffusion processes: One can either
try to find an acceptable relativistic diffusion equation, or one can focus directly on the structure of the diffusion propagator.
In the present part we shall consider the latter approach [23]. The basic idea is to rewrite the nonrelativistic diffusion
propagator (199) in such a form that its relativistic generalization follows in a straightforwardmanner. This can be achieved
be re-expressing Eq. (199) in terms of an integral-over-actions.

For this purpose, we consider a nonrelativistic particle traveling from the event x̄0 = (t0, x0) to x̄ = (t, x) and assume
that the particle can experience multiple scatterings on its way, and that the velocity is approximately constant between
two successive scattering events. Then the total action (per mass) required along the path is given by

a(x̄|x̄0) = 1
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∫ t

t0
dt ′ v(t ′)2, (213)

where the velocity v(t ′) is a piecewise constant function, satisfying

x = x0 +
∫ t

t0
dt ′ v(t ′). (214)

Clearly, the nonrelativistic action (213) becomes minimal for the deterministic (direct) path, i.e., if the particle does not
collide at all. In this case, it moves with constant velocity v(t ′) ≡ (x − x0)/(t − t0) for all t ′ ∈ [t0, t], yielding the smallest
possible action value

a−(x̄|x̄0) = (x − x0)2

2(t − t0)
. (215)

On the other hand, to match the boundary conditions it is merely required that the mean velocity equals (x − x0)/(t − t0).
Consequently, in the nonrelativistic case, the absolute velocity of a particle may become arbitrarily large during some
intermediate time interval [t ′, t ′′] ⊂[ t0, t]. Hence, the largest possible action value is a+(x̄, x̄0) = +∞. These considerations
put us in the position to rewrite the Wiener propagator (199) as an integral-over-actions:

p(x̄|x̄0) ∝
∫ a+(x̄|x̄0)

a−(x̄|x̄0)
da exp

(
− a

2D

)
, (216a)

supplemented by the normalization condition

1 =
∫

dx p(x̄|x̄0). (216b)

The representation (216)may be generalized to the relativistic case in a straightforwardmanner: Onemerely needs to insert
the corresponding relativistic expressions into the boundaries of the integral (216a). A commonly considered relativistic
generalization of Eq. (213), based on the particle’s proper time, reads [6]

a(x̄|x̄0) = −
∫ t

t0
dt ′

[
1 − v(t ′)2

]1/2
. (217)

Analogous to the nonrelativistic case, the relativistic action (217) assumes its minimum a− for the deterministic (direct)
path from x0 to x, characterized by a constant velocity v(t ′) ≡ (x − x0)/(t − t0). One explicitly obtains

a−(x̄|x̄0) = −
[
(t − t0)2 − (x − x0)2

]1/2
, (218a)

i.e., a− is the negative Minkowski distance of the two spacetime events x̄0 and x̄. The maximum action value a+ = 0 is
realized for particles that move at light speed.79 Hence, the transition PDF for the relativistic generalization of the Wiener
process reads

p(x̄|x̄0) = N −1
{
exp

[
−a−(x̄, x̄0)

2D

]
− 1

}
, (218b)

if (x − x0)2 ≤ (t − t0)2, and p(x̄|x̄0) ≡ 0 otherwise, with a− determined by Eq. (218a).

79 In general, particles must undergo reflections in order to match the spatial boundary conditions.
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a different approach [23] that may provide a viable alternative to the solutions of the telegraph equation.

5.3. Relativistic diffusion propagator

In principle, one can distinguish two different routes towards constructing relativistic diffusion processes: One can either
try to find an acceptable relativistic diffusion equation, or one can focus directly on the structure of the diffusion propagator.
In the present part we shall consider the latter approach [23]. The basic idea is to rewrite the nonrelativistic diffusion
propagator (199) in such a form that its relativistic generalization follows in a straightforwardmanner. This can be achieved
be re-expressing Eq. (199) in terms of an integral-over-actions.

For this purpose, we consider a nonrelativistic particle traveling from the event x̄0 = (t0, x0) to x̄ = (t, x) and assume
that the particle can experience multiple scatterings on its way, and that the velocity is approximately constant between
two successive scattering events. Then the total action (per mass) required along the path is given by

a(x̄|x̄0) = 1
2

∫ t

t0
dt ′ v(t ′)2, (213)

where the velocity v(t ′) is a piecewise constant function, satisfying

x = x0 +
∫ t

t0
dt ′ v(t ′). (214)

Clearly, the nonrelativistic action (213) becomes minimal for the deterministic (direct) path, i.e., if the particle does not
collide at all. In this case, it moves with constant velocity v(t ′) ≡ (x − x0)/(t − t0) for all t ′ ∈ [t0, t], yielding the smallest
possible action value

a−(x̄|x̄0) = (x − x0)2

2(t − t0)
. (215)

On the other hand, to match the boundary conditions it is merely required that the mean velocity equals (x − x0)/(t − t0).
Consequently, in the nonrelativistic case, the absolute velocity of a particle may become arbitrarily large during some
intermediate time interval [t ′, t ′′] ⊂[ t0, t]. Hence, the largest possible action value is a+(x̄, x̄0) = +∞. These considerations
put us in the position to rewrite the Wiener propagator (199) as an integral-over-actions:

p(x̄|x̄0) ∝
∫ a+(x̄|x̄0)

a−(x̄|x̄0)
da exp

(
− a

2D

)
, (216a)

supplemented by the normalization condition

1 =
∫

dx p(x̄|x̄0). (216b)

The representation (216)may be generalized to the relativistic case in a straightforwardmanner: Onemerely needs to insert
the corresponding relativistic expressions into the boundaries of the integral (216a). A commonly considered relativistic
generalization of Eq. (213), based on the particle’s proper time, reads [6]

a(x̄|x̄0) = −
∫ t

t0
dt ′

[
1 − v(t ′)2

]1/2
. (217)

Analogous to the nonrelativistic case, the relativistic action (217) assumes its minimum a− for the deterministic (direct)
path from x0 to x, characterized by a constant velocity v(t ′) ≡ (x − x0)/(t − t0). One explicitly obtains

a−(x̄|x̄0) = −
[
(t − t0)2 − (x − x0)2

]1/2
, (218a)

i.e., a− is the negative Minkowski distance of the two spacetime events x̄0 and x̄. The maximum action value a+ = 0 is
realized for particles that move at light speed.79 Hence, the transition PDF for the relativistic generalization of the Wiener
process reads

p(x̄|x̄0) = N −1
{
exp

[
−a−(x̄, x̄0)

2D

]
− 1

}
, (218b)

if (x − x0)2 ≤ (t − t0)2, and p(x̄|x̄0) ≡ 0 otherwise, with a− determined by Eq. (218a).

79 In general, particles must undergo reflections in order to match the spatial boundary conditions.
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“Temperature” problem 

in RTD?

moving bodies 
appear cooler

.. hotter!

maybe ... not

1907/08

1940s

1923/1963

CK Yuen, Amer. J. Phys. 38:246 (1970)

T=T’ 1966-69



Jüttner Gas
fMaxwell(~p) = [β/(2πm)]

d/2 exp
¡
−βp2/2m

¢
f (~) Z−1

h
β ( 2 4 + 2 2)1/2

i
fJüttner(p) = Z

1
d exp

h
−βJ(m2c4 + p2c2)1/2

i
u = 0

h~p · ~vi = dkBT = d/βJ
statistical realtivistic temperature

1

u = 0

T = T = (kBβJ)−1

J. Dunkel & P.H., Phys. Rep. 471, 1-73 (2009)



Two prominentTwo prominent 
examplesexamples

Stochastic BrownianStochastic 
Resonance

Brownian  
Motors



Stochastic ResonanceStochastic Resonance

Weak signal
( in a nutshell )

Output signal

N iNoise source

SystemSystem



Why are the ice-ages so periodic ? y g p

Milankowitch cycles:Milankowitch cycles: 
Small changes in earth orbit 
eccentricity with 100k year 

i di it

Changes are small!
(<0.1% of solar 
constant)periodicity constant)

What can amplify
those small changes ?

M Milankowitch Handbuch der Klimatologie IM. Milankowitch, Handbuch der Klimatologie I 
(1930)



Milankowitch Cycles and Bistabilityy y

Climate “landscape”Climate landscape

warm cold

cold warm

Benzi, Sutera and Vulpiani, p
(Tellus, 1981)

C. Nicolis and G. Nicolis
(Tellus, 1981)



Occurrence of ice agesOccurrence of ice ages
Noise and periodic of solar origin 

A. Ganopolski, S. Rahmstorf, Phys. Rev. Lett. 88, 038501 (2002)



Noise‐assisted synchronized 
hopping

escapeperiod 2TT ≅



SynchronizationSynchronization



Power spectral densityPower spectral density

Spectrum

Frequency



Measuring SRMeasuring SR

Signal to noise ratio
Spectral amplificationSpectral amplification
mutual information

l i i ↔cross‐correlation: input ↔ output
peak area, (phase‐) synchronization, …

SR-reviews:
L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)gg g y ( )
P. Hänggi, ChemPhysChem 3, 285 (2002)



A lifi i f ll i l b iAmplification of small signals by noise

(P. Jung, P. Hänggi, Phys. Rev. A 44, 8032 (1991))

More noise more signal !!More noise , more signal !!



SR in colloidal systemsSR in colloidal systems
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Tperiod = 2 sec

D. Babic, C. Schmitt, I. Poberaj, C. Bechinger, 
Europhys. Lett. 67, 158 (2004)
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SR ‐ IngredientsSR  Ingredients

Threshold system
Weak ( subthreshold ) signalWeak ( subthreshold ) signal
Noise

Anomalous amplification propertiesAnomalous amplification properties



Thresholds and Stochastic 
Resonance

P. Jung, Phys. Rev. E50, 2513 (1994), F. Moss and L. Kiss, EPL, 29 (1995)



Stochastic Resonance in 

Neurobiology

Input: currents at synapses

Processing: action potential if the 
sum of currents exceeds threshold

Output: electric pulses 
traveling down the axon

C ti C iti S i I t ti (CCSI)

traveling down the axon

source: Consortium on Cognitive Science Instruction (CCSI)

Basic idea: Signals below threshold can be detected in the presence ofBasic idea: Signals below threshold can be detected in the presence of 
additional noise 



SR in Visual PerceptionSR in Visual Perception

Experiment:

M. Riani, E. Simonotto, Nuovo Cimento D 17, 903 (1995)



SR and human posture controlSR and human posture control

Somatosensory function declines with age and in diabetic patients CanSomatosensory function declines with age and in diabetic patients. Can 
additional noise help restore function? 

Reduction in sway of person

A. Priplata, J. Niemi, M. Salen, J. Harry, L.A. Lipsitz and J.J. Collins
Phys. Rev. Lett. 89 (2002)



• P
• MM
• S

C• C
• D
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•• …

SRT

Parkinson
Multiple sclerosis (MS)Multiple sclerosis (MS)
Stroke / skull-brain-trauma
C ti l iCross-section paralysis
Depressionp
Pain
…

T Zeptor Training - Powerslide Team
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dSR trends

S ti t l SRSpatio – temporal SR

Aperiodic SR

Quantum SR 



Motors =⇒ Brownian motors

Two heat reservoirs One heat reservoir

Perpetuum mobile of the second kind?

NO !



Source: Scientific American (2001)



Brownian motor

Movie


ratchet-uphill.mov
Media File (video/quicktime)



Temperature / Flashing RatchetTemperature / Flashing Ratchet

LOW T

HIGH T

Free diffusion

HIGH T
Retrapping

LOW T

Ratchet 
forward

Return to 
original well

LOW T



Brownian motors ‐ CharacteristicsBrownian motors  Characteristics

Noise & AC-Input → DC-Ouput

Non equilibrium Noise Directed TransportNon-equilibrium Noise → Directed Transport 

Current reversalsCurrent reversals

Applications:
• Novel pumps and traps for 

charged or neutral particles

• Brownian diodes & transistors



Ask not what physics can do 
for biology ask what biologyfor biology, ask what biology 

can do for physics

P.H. and F. Marchesoni







Drift Ratchet ‐ DeviceDrift Ratchet  Device

Source: F. Müller, MPI for microstructure physics, Halle



Drift Ratchet ‐ TheoryDrift Ratchet  Theory
C. Kettner, P. Reimann, P. H., F. Müller, Phys. Rev. E 61, 312 (2000)

Setup Particle Separation



Drift Ratchet – ExperimentDrift Ratchet  Experiment 
S. Matthias, F. Müller, Nature 424, 53 (2003)



Quantum Demon ? 
A measurement → Increase information → Reduction of entropy

Source: H.S. Leff, Maxwell’s Demon (Adam Hilger, Bristol, 1990) 



Quantum Brownian MotorsQuantum Brownian Motors



Quantum‐Langevin‐equationQuantum Langevin equation

And:



Rocking Ratchet ‐ TheoryRocking Ratchet  Theory
P. Reimann, M. Grifoni, P. H., Phys. Rev. Lett. 79, 10 (1997)

Current enhancement 
due to tunneling

Tunneling induced 
current reversal

Finite current 
for T→0



Rocking QM 
Ratchet 
Experiment– Experiment 

H. Linke, et al., 
SCIENCE 286 2314 (1999)SCIENCE 286, 2314 (1999)
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Generalizations of 
B i M iBrownian Motion 



Brownian motion:

Hamiltonian: HHHH ++=

Generalized Langevin‐equation
Hamiltonian: WWenvsystot HHHH ++=

Asymptotically normal, anomalously fast, or anomalously slow 
– via fractional Brownian motion –

Connection to the fractional Fokker‐Planck‐equation



Confined Diffusion of Brownian particles: Entropic versus 
hydrodynamic interactions 

 

 
Proc. Natl. Acad. Sci. 114, 9564–9569 (2017) 

                                                          



normal Brownian motion

Levy flight: superdiffusion



Mean squared displacement

Brownian movement Lévy-Brownian movement

Source: Physica A 282, 13 (2000) Source: Physica A 282, 13 (2000)



Fractional Fokker‐Planck equation

Fat tails in the
Subdiffusion (α<1):

Riemann Liouville Operator

Fat tails in the 
distribution of the
residence times

Riemann-Liouville Operator

Superdiffusion (α>1):
Fat tails in the 

distribution of the
jump lengths

Riesz-derivative

jump lengths



Fractional Fokker‐Planck equation
subdiffusive (α<1)

Riemann-Liouville Operator



Noise – always bad ?Noise  always bad ?

Source: Agilent Technologies



A QUESTION ? 
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