

Diffraction at TOTEM and CMS

Fabrizio Ferro

Outlook

- What is diffraction at the LHC
- Why we study diffraction at the LHC
- How we measure diffraction in CMS/TOTEM
- How we can exploit diffraction
- Which results
- Future plans

Disclaimer: I don't mean to be exhaustive on any of the items above

Diffraction: from optics to HEP

- Diffraction in optics occurs when a beam of light meets/hits an obstacle whose dimensions are comparable to its wavelength
- The intensity pattern of diffracted light is characterized by a sharp forward peak (+secondary maxima)

$$I(\theta) \sim I_0(1 - Bk^2\theta^2)$$

- In hadron scattering we may imagine that hadron interaction and propagation is given by the absorption of the wave functions caused by many inelastic channels open at high energy
- Actually some (diffractive) hadronic processes show similar behavior in the differential cross section

$$\frac{d\sigma}{dt} = \frac{d\sigma}{dt}\Big|_{t=0} e^{-B|t|} \sim \frac{d\sigma}{dt}\Big|_{t=0} (1-B|t|)$$

With $t = -2 |p|^2 (1-\cos\theta)$ (Mandelstam invariant)

Defining Diffraction in HEP

4

 An interaction in which no quantum numbers (but those of the vacuum) are exchanged

OR

 An interaction characterized by a final state with non exponentially suppressed rapidity gaps

Non Diffractive processes

- color exchange
- gaps exponentially suppressed

$$\frac{d\sigma}{d\Delta\eta} \sim e^{-\Delta\eta}$$

Diffractive processes

- colorless exchange
- large gap signature

$$\frac{d\sigma}{d\Delta\eta}$$
 ~const

Pseudorapidity: $\eta = -\ln(\tan(\theta/2))$

Theoretical frame (just a sketch) – (1)

- Most of diffractive processes are soft processes, pQCD can't be used
- Historically diffraction is described by means of the Regge theory techniques
 - hadron-hadron interactions are described by the exchange of a whole set of particles usually referred to as a reggeon
 - The reggeon with the quantum numbers of the vacuum is called **Pomeron**

- Nevertheless diffraction can occur also in hard processes, as proved by HERA in DDIS (diffractive deep inelastic scattering) studies
 - This opened the doors to the interpretation of the Pomeron in QCD terms. The simplest **Pomeron** is seen as a **colorless couple of gluons**

5

Theoretical frame (just a sketch) – (2)

The optical theorem that comes from the Unitarity of \$ matrix

$$\sigma_{\text{tot}} = \frac{1}{s} \Im(A_{\text{el}}(t=0))$$

lacktriangle In the Regge theory $\sigma_{
m tot} \sim \sum A_i s^{lpha_i(0)-1}$

Typically $\alpha(0)\sim 0.5$. To account for a rising of σ_{TOT} with s a trajectory with $\alpha(0)>1$ is needed

The Pomeron trajectory is introduced with $\alpha(0)_{Pomeron} > 1$ and only one "particle"

The elastic scattering distribution is expected to show a broad exponential peak that shrinks with the energy

$$\frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}t} \sim s^{2\alpha(0)-2} e^{-2\alpha'|t|\ln s}$$

The shrinkage is actually seen in data

Theoretical frame (just a sketch) – (3)

- Regge theory was developed in the 60's
- Since then many models have been developed to better describe the experimental results
 - t-channel models, based on the Regge framework
 - s-channel models, based on the eikonal description

$$\sigma_{\rm el} = \int d^2b \, |\Gamma(s,b)|^2 = \int d^2b \, |1 - e^{-\Omega(s,b)}|^2,$$

$$\sigma_{\rm tot} = 2 \int d^2b \, \Re(\Gamma(s,b)) = \int d^2b \, \Re\left(1 - e^{-\Omega(s,b)}\right)$$

- QCD inspired models
- Pomeron in QCD
 - As a gluon ladder (DGLAP and BFKL)

Diffraction at HERA: DDIS - (1)

$$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left\{ 1 - y + \frac{y^2}{2[1 + R(x, Q^2)]} \right\} \underline{F_2(x, Q^2)}$$

DIS probes the structure function F_2 of the proton

$$\frac{d^4\sigma}{d\beta dQ^2 dx_{IP} dt} = \frac{4\pi\alpha^2}{\beta Q^4} \left\{ 1 - y + \frac{y^2}{2(1 + R^{D(4)})} \right\} \frac{F_2^{D(4)}(\beta, Q^2, x_{IP}, t)}{(\beta, Q^2, x_{IP}, t)}$$

 $F_2^{D(4)} \approx f_{IP} (x_{IP},t) F_2^{IP} (\beta,Q^2)$

DDIS probes the "structure function" F₂^P of the Pomeron

x=fraction of the proton momentum carried by the struck quark x_P = fraction of proton momentum taken by the Pomeron

 $\beta = \chi/\chi_{P}$

Comparing the structure functions of proton and Pomeron

- the Pomeron is not a "normal" hadron
- the Pomeron is mainly done of gluons

Diffraction at HERA: DDIS - (2)

Hard scattering factorization occurs both in DIS and in DDIS

9

 $F_2^D \sim f_{i/p}^D \otimes \widehat{\sigma_i}$ universal partonic cross section diffractive parton distribution function: evolves according to DGLAP

 $f_{i/p}^{D}(z,Q^{2},x_{IP},t)$: probability to find, with probe of resolution Q^{2} , in a proton, parton i with momentum fraction z, under the condition that proton remains intact, and emerges with small energy loss, x_{IP} , and momentum transfer t – diffractive PDFs are a feature of the proton

- DPDFs can be seen as a new type of PDFs which apply when the vacuum quantum numbers are exchanged
- Hard scattering factorization has been seen at HERA in diffractive DIS (studying e.g. dijets events)

From HERA to Tevatron: factorization breaking

- All hard-diffraction processes at Tevatron Run 1 at $\sqrt{s}=1.8$ TeV are **suppressed by a factor ~8** wrt the predictions based on HERA PDFs
- Violation of factorisation understood in terms of (soft) rescattering corrections of the spectator partons (MPI)
- MPI lower the probability of the rapidity gap to form. A rapidity gap survival probability \$² can be introduced
- S² at the LHC? S² ~5% in most models but, anyway, S² is difficult to predict and difficult to measure...

Colloquia - Firenze 2019

F.Ferro - INFN Genova

Why studying diffraction at the LHC

11

- In proton-proton scattering at the LHC energies ~40% of the total cross section is made of diffractive processes
- Elastic scattering and soft diffractive processes can shed new light on the soft hadron-hadron interactions
- Performing SM precision measurements and searching for new physics require a deep understanding of the Underlying Event
- Hard diffraction provides an important test of QCD and probes the low-x structure of the proton
- ightharpoonup Low-x \rightarrow high gluon density \rightarrow saturation
- Central exclusive production (CEP) pp→pXp is a powerful "tool" to study rare processes because of the kinematics and quantum number constraints
- Total and elastic cross sections, forward multiplicity and energy flow can help understanding the development of air-showers in Cosmic Ray physics

Diffractive processes at the LHC

12

Diffractive cross sections account for ~40-45% of the total proton-proton cross section at the LHC energies.

Large rapidity gaps are present.

At least one interacting **proton survives** in most of the diffractive processes.

Experimental keys to diffraction:

- measuring gaps
- detect forward protons

How to measure diffraction with CMS and TOTEM

- CMS and TOTEM share the same interaction point at the LHC
- ► CMS coverage: $|\eta| < \sim 5$ with calorimeters ($|\eta| < \sim 2.5$ also with tracker)
- TOTEM coverage ~3 < $|\eta|$ < ~6.5 with trackers + forward proton detectors ($|\eta|$ ~ 10)
- CMS+TOTEM = an almost 4π acceptance detector

But CMS and TOTEM are two different collaborations...

- CMS measured diffraction with LRG strategy
- TOTEM measured diffraction with proton taggers and forward trackers in special low luminosity runs
 Then
- CMS and TOTEM made common measurements in low luminosity runs (merging data a posteriori)
 Finally
- CMS and TOTEM merged efforts and built a Precision Proton Spectrometer (CT-PPS) to measure the protons also in high luminosity runs with common DAQ

13

The experimental apparatus

The operating conditions of the LHC (running scenarios) are of the utmost importance for diffraction studies

CMS and TOTEM experiments share the Interaction Point 5 at the LHC

The CMS central detectors

TOTEM and CMS Very Forward Detectors

TOTEM inelastic telescopes and CMS/TOTEM proton tagging detectors

Colloquia - Firenze 2019

F.Ferro - INFN Genova

16

The Roman Pot devices

17

A RP station

Layout inside the LHC tunnel

Roman Pots: detectors near the beam

18

Roman Pot unit with motor system (step size: 5 µm)

LHC beam-pipe

Separation Secondary vacuum ~ 20mbar of high LHC vacuum Temp: -25 °C from detector vacuum

Roman Pot parking position

Roman Pot data taking position

Typical beam size:
540 µm / 850 µm in low lumi
~100 µm in high lumi

Colloquia - Firenze 2019

Different detector configurations

Low luminosity runs

- Si strips in vertical (elastic scattering)
- Si strips in horizontal (alignment)

High luminosity runs

- Si strips in vertical (alignment)
- 3D pixels in horizontal (diffraction)
- Timing dets in horizontal (diffraction)

F.Ferro - INFN Genova

Tracking detectors

Silicon strips

Silicon pixels

- 10 planes per station of "edgeless" silicon strip detectors (5 'u' + 5 'v')
- pitch: 66 µm; track resolution: ~12 µm
- designed for low-luminosity running (TOTEM)

- 6 planes per station of "slim-edge" silicon pixel detectors with 3D technology (tilted by ~18°)
- pixel size: 100 μm × 150 μm; track resolution ~20 μm
- designed for high-luminosity running
 (PPS)

 multi-track capability

Timing detectors

- TOF measurement to reduce background from pileup (uncorrelated proton tracks)
 - Ideally, desired resolution $\sigma_t \approx 20 \text{ ps} \Rightarrow \sigma_z \approx 4 \text{ mm}$

Diamond sensors

 4 planes (3 in 2017) of CVD diamond sensors

- macro-pixels of varying size
- ¶ single-plane resolution target: ~80 ps
- 2+2 double-diamond layers in 2018 (larger signal expected ⇒ faster rise time)

Pradiation hard

- 1 plane (in 2017) of UFSD, based on LGAD technology
- single-plane resolution in test beam:~30 ps
- R&D to improve radiation hardness

Common readout electronics

More on timing measurement

The only way to associate the protons arrived in the RP to the vertex reconstructed by CMS is to measure the **TOF** difference between the left and the right protons.

- Vertex reconstructed by using the optics and tracking information is not precise enough.
- •Z = c $\Delta T/2 \rightarrow 20$ ps time resolution/Arm makes possible the longitudinal vertex reconstruction with less than 5 mm uncertainty

Proton reconstruction and beam optics

22

- **■** (x*, y*): vertex position
- $s \equiv \text{beam axis}$ \bullet (θ_x^*, θ_y^*) : emission angle: $t \approx -p^2(\theta_x^{*2} + \theta_y^{*2})$
 - $\xi = \Delta p/p$: momentum loss (elastic case: $\xi = 0$)

Product of all lattice element matrices

$$x_{RP} = L_x \Theta_x^* + v_x x^* + D_x \xi$$
$$y_{RP} = L_y \Theta_y^* + v_y y^*$$

- \blacksquare L_x, L_y: effective lengths (sensitivity to scattering angle)
- \mathbf{v}_{x} , \mathbf{v}_{y} : magnifications (sensitivity to vertex position)
- D_x : dispersion (sensitivity to momentum loss); $D_y \sim 0$:

Reconstruction of proton kinematics inverting the transport equation

Excellent beam optics understanding needed

[New J. Phys. 16 (2014) 103041]

Optics parameters from data

23

Machine imperfections alter the optics:

- Strength conversion error, $\sigma(B)/B \approx 10^{-3}$
- Beam momentum offset, $\sigma(p)/p \approx 10^{-3}$
- Magnet rotations, $\sigma(\phi) \approx 1$ mrad
- Magnetic field harmonics, $\sigma(B)/B \approx 10^{-4}$
- Power converter errors, $\sigma(I)/I \approx 10^{-4}$
- Magnet positions Δx , $\Delta y \approx 100 \mu m$

$$t(v_x, L_x, L_y, ..., p) = -p^2 \cdot (\Theta_x^{*2} + \Theta_y^{*2})$$

Low and high luminosity optics

Low luminosity \rightarrow high β^* High luminosity \rightarrow low β^*

24

 $\beta^* = 0.55$ m (low $\beta^* =$ standard at LHC)

diffractive protons: mainly in horizontal RP elastic protons: in vertical RP near x ~ 0 sensitivity only for large scattering angles

 β^* = 90 m (developed for σ_{total} measurement)

Qualitatively:

Low β^* : acceptance driven by $x \sim \xi$ High β^* : acceptance driven by t_{min}

diffractive protons: mainly in vertical RP elastic protons: in narrow band at $x \approx 0$. sensitivity for small vertical scattering angles

Transverse size of IP Angular beam divergence
$$\sigma_{x,y}^* = \sqrt{\frac{\varepsilon_n \beta^*}{\gamma}} \sim 15\text{--}30 \ \mu\text{m}$$

$$\sigma_{x,y}^* = \sqrt{\frac{\varepsilon_n \beta^*}{\gamma}} \sim 15\text{--}30 \ \mu\text{m}$$

$$\sigma_{x,y}^* = \sqrt{\frac{\varepsilon_n \beta^*}{\gamma}} \sim 10\text{--}6 \ \mu\text{rad}$$

$$\sigma(\Theta_{x,y}^*) = \sqrt{\frac{\varepsilon_n}{\beta^* \gamma}} \sim 10\text{--}6 \ \mu\text{rad}$$

Elastic scattering: data sets vs t ranges

Elastic scattering: do/dt before LHC

Colloquia - Firenze 2019

Some open questions for LHC energies

- What happens to the dip?
- Any secondary maxima/structures at large t?
- What happens to the forward peak slope B(t)?
- Can we measure ρ?

$$\rho = \frac{\Re A^H(t=0)}{\Im A^H(t=0)}$$

F.Ferro - INFN Genova

Elastic scattering: do/dt at LHC

27

- No structures at high t
- Dip still there
- Shrinkage of the forward peak continues

Elastic scattering: dip at LHC

- The dip position decreases with energy
- Bump/dip ratio measured at different energies

Colloquia - Firenze 2019

F.Ferro - INFN Genova

-t [GeV²]

Elastic scattering: LHC vs Tevatron

The measurement of TOTEM at 2.76 TeV can be compared with D0's at 1.96 TeV

- First comparison of pp and ppbar data at TeV energies
- Ratio bump/dip
 - \blacksquare R=1.7±0.2 in pp
 - R=1.0±0.1 in ppbar

Such a difference in R in pp and ppbar scattering can be interpreted as the existence of the **Odderon** (the J=1-counterpart of the Pomeron).

The Odderon is described in QCD as the exchange of a colorless 3-gluon bound state in the t-channel.

The comparison of TOTEM and D0 is still a work in progress ...

Elastic scattering at low t

- Usually called the "exponential region"
- Peak is fitted with a polynomial exponential

$d\sigma_{el}/dt = A * exp\left(\sum_{i=1}^{N_{el}} d\sigma_{el}/dt\right)$	$\left(b_{i}t^{i}\right)$
---	----------------------------

N_b	χ^2/ndf	p-value	significance
1	117.5/28 = 4.20	$6.1 \cdot 10^{-13}$	(7.2σ)
2	29.3/27 = 1.09	0.35	0.94σ
3	25.5/26 = 0.98	0.49	0.69σ

- Non-exponentiality already seen at the ISR
- Simple exponential ruled out with a significance of 7.2 σ
- Differences of the order of ~1%. Very high statistics and very good control of systematics.

The peak at "first glance"

Difference wrt exponential

F.Ferro - INFN Genova

Elastic scattering: Coulomb interference and measurement of ρ

31

$$\rho = \frac{\Re A^H(t=0)}{\Im A^H(t=0)}$$

- Totem direct measurement at 8 and 13 TeV
- Indirect measurement done at 7
 TeV
- First pp measurements of ρ since ISR era
- Expected results at 900 GeV

Direct measurement done fitting the amplitude from CNI (Coulomb Nuclear Interference).

The new measurements are clearly below predictions

Total pp cross section: analysis methods

From Optical theorem

$$\sigma_{\text{tot}}^2 \propto \left[\Im A_{\text{el,N}}(t=0)\right]^2 \propto \frac{1}{1+\rho^2} |A_{\text{el,N}}(t=0)|^2 = \frac{16\pi}{1+\rho^2} \frac{d\sigma_{el}}{dt}|_{t=0} \quad \text{with} \quad \rho = \frac{\Re A_{\text{el,N}}}{\Im A_{\text{el,N}}}|_{t=0}$$

$$L\sigma_{\text{tot}} = N_{\text{el}} + N_{\text{inel}}$$

N_{inel} (from T1,T2 telescopes) N_{el} (from RomanPots detectors)

L independent

$$\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$$

$$\sigma_{tot} = \sigma_{el} + \sigma_{inel}$$

Total cross section: results

Total pp cross section: measurements

- 2.76 TeV
 - Luminosity independent σ_{tot} = (84.7 ±3.3) mb using ρ = 0.145 [COMPETE]
- → 7 TeV
 - Luminosity independent σ_{tot} = (98.0 ± 2.5) mb using ρ = 0.14[COMPETE]
 - ightharpoonup p independent σ_{tot} = (99.1 ± 4.3) mb
 - From elastic scattering only

$$\sigma_{tot} = (98.3 \pm 2.8) \text{ mb}$$

$$\sigma_{tot} = (98.6 \pm 2.2) \text{ mb}$$

- 8 TeV
 - Luminosity independent $\sigma_{tot} = (101.7 \pm 2.9)$ mb
- 13 TeV
 - Luminosity independent σ_{tot} = (110.6 ± 3.4) mb

Colloquia - Firenze 2019

F.Ferro - INFN Genova

Total cross section: some implications

Forward peak slope B

Forward peak shrinkage speeds up

 confirmation of the increase of elastic cross section vs total ratio with energy

35

Total cross section and ρ : implications

■ The COMPETE collaboration fitted 256 models with all existing data

None of the considered models is compatible with both sets of measurements

It can be shown from basic principles that a relation such as $\rho \propto \sim d\sigma_{tot}/ds$ holds Therefore it may be that the increase rate of σ_{tot} is going to slow down at higher energies

OR ... see next slide ...

Total cross section and ρ : implications

■ ... there's a need of the exchange of an odd-signature object

Such an object, a Reggeon usually referred to as **Odderon**, which can be seen as a colourless bound state of three gluons with quantum numbers $J^{PC} = 1^{-1}$

Single diffraction (preliminary)

High mass

Estimated uncertainties: $\Delta B \sim 15\%$, $\Delta \sigma \sim 20\%$

 σ_{SD} = 6.5 ± 1.3 mb in the range 3.4 GeV < M_{diff} < 1.1 TeV Preliminary results. Not all corrections included

Colloquia - Firenze 2019

F.Ferro - INFN Genova

Charged-particle pseudorapidity density

39

- MC tuning in the forward region
- Valuable information for Cosmic Ray physics simulations
- Measurements done with T2 and CMS central detector

Inclusive dataset

None of the MC generators can consistently describe data

NSD-enhanced pp CMS-TOTEM, (s = 8 TeV, L = 45µb⁻¹

lerwig++ EE3-CTEQ6L

 $N_{ch} \ge 1$ in 5.3< $\eta < 6.5$ and -6.5< $\eta < -5.3$

Hard diffraction: di-jet production (1)

First CMS-TOTEM measurement with tagged protons from low-pileup data at $\sqrt{s}=8TeV$

- Dijets in central CMS, scattered proton in Roman Pots
- Background from inclusive dijets, in coincidence with random RP track from pileup or beam-background proton
- Matching: compare ξ calculated from protons and from jets

Event selection $\xi_{\text{CMS}^-}\,\xi_{\text{TOTEM}} < 0$ $p_T > 40 \text{ GeV}, |\eta| < 4.4, \xi < 0.1$

 $0.03 < |t| < 1 \, GeV^2$

$$\sigma_{\rm jj}^{\rm pX} = 21.7 \pm 0.9 \, ({\rm stat}) \, {}^{+3.0}_{-3.3} | ({\rm syst}) \pm 0.9 \, ({\rm lumi}) \, {\rm nb}$$

$$d\sigma/dt \propto \exp^{-b|t|}$$
 $b = 6.6 \pm 0.6 \text{ (stat)}^{+1.0}_{-0.8} \text{ (syst)} \text{ GeV}^{-2}$

Hard diffraction: di-jet production (2)

- Cross section as a function of ξ
- Ratio of diffractive to inclusive dijets as a function of x

41

$$x^{\pm} = \frac{\sum_{\text{jets}} \left(E^{\text{jet}} \pm p_z^{\text{jet}} \right)}{\sqrt{S}}$$

Pythia 8 DG with Dynamic Gap model based on MPI shows good agreement with data

Comparison with CDF results: factor of ~3 suppression wrt to 1.96 TeV, larger contributions from rescattering processes

Central Exclusive Production (with CMS)

42

- CMS and TOTEM work together to performs CEP studies
- CMS-TOTEM Trigger information are exchanged and data can be merged offline
- Central exclusivity can be verified via rapidity gaps and forward proton tagging
- selection rules for system X:

$$ightharpoonup J^{PC} = 0^{++}, 2^{++}, \dots (PP, gg)$$

$$\rightarrow$$
 J^{PC} = 1- (γ **P**)

Central Exclusive Production (with CMS)

Low mass resonances and glueballs

- At low (x ~ 10^{-3} 10^{-4}) LHC becomes (a sort of) gluon-gluon collider and CEP is ideal for **glueball production**
 - CEP with $M_X \sim 1 4$ GeV produced very purely from gg
- \bullet 0++(2++) glueball candidates: f_0 (f_2) resonances in 1.3 -1.8 GeV(> 2 GeV) mass range
- Strategy:
 - lacktriangle determine σ_{CFP} of glueball candidates
 - characterize their decays: $\pi^+\pi^-$, K^+K^- , $\rho^0\rho^0$...
- CMS+TOTEM advantages:
 - Good reconstruction of charged-particle-only events using dedicated low pT tracking
 - Good particle ID and mass resolution ($\sigma(M) \sim 30$ MeV) using CMS tracker
 - RP protons from TOTEM to assure exclusivity ($p_{T,RP} \sim p_{T,tracker}$, $vtx_{RP} \sim vtx_{tracker}$)
- CMS+TOTEM 2015: L = 0.4 pb⁻¹ of high β* with dedicated low mass CEP trigger

43

Exclusive $\gamma\gamma \rightarrow l^+l^-$ with PPS (1)

PPS took data as a subdetector of CMS in 2016, 2017 and 2018 high-luminosity runs.

Open the possibility of studying rare processes.

- Initial analysis of "standard candle" process: $\gamma\gamma \rightarrow l^+l^-$
- Only 1 proton required, to increase acceptance at lower masses,
- Background from real di-leptons, in coincidence with random RP tracks from pileup or beam-background protons
- \blacksquare / Matching required compare ξ calculated from protons and from dileptons

$$\xi(\mu\mu) = \frac{1}{\sqrt{s}} \times (p_T(\mu_1)e^{\pm\eta(\mu_1)} + p_T(\mu_2)e^{\pm\eta(\mu_2)})$$

- Observed: 12 µ+µ- and 8 e+e- events with matching kinematics (20 in total)
- Background estimate: 1.49 \pm 0.07 (stat.) \pm 0.53 (syst.) μ + μ events 2.36 \pm 0.09 (stat.) \pm 0.47 (syst.) e+e- events
- Combined significance: 5.1σ

Colloquia - Firenze 2019

F.Ferro - INFN Genova

Exclusive $\gamma\gamma \rightarrow l^+l^-$ with PPS (2)

45

- Event properties:
 - Dilepton mass-rapidity distributions consistent with acceptance for single arm events
 - No double tagged candidates, consistent with Standard Model expectations
 - Mass spectrum from 110 GeV to >900 GeV

Proton-tagged yy collisions at the EW scale!

PPS in 2017-2018: data taking and physics prospects

Si-strip tracking replaced with 3D Si-pixel tracking operation with fast diamond tracking detectors

About 100/fb of data with RP inserted so far

High-mass/low cross section BSM, electroweak, and QCD & top physics with forward protons, such as gauge boson pair production (WW, ZZ, ZY, YY), searches for anomalous couplings,

new resonances,...

Colloquia - Firenze 2019

F.Ferro - INFN Genova

Summary

- High energy diffraction measurements are of the utmost importance to understand QCD, especially when soft interactions are involved
- The measurements at the **LHC complete a long series of measurements** done since the beginning of HEP at hadron colliders and sheds new light on questions that were left open, while some still are
- Diffraction can also be used as a tool to select a very clean environment and to allow the measurement of rare processes
- Studying diffraction is a challenge not only for theorists but also for experimentalists, since dedicated detectors need to be built and operated in very unfriendly conditions

Thank you!

Some references

- http://totem.web.cern.ch/Totem/publ_new.html
- <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/FSQ/index.html</u>
- Catanesi, M.G. and F. Ferro, High-energy proton cross sections. Rivista Del Nuovo Cimento, 2014. 37(6): p. 333-373.
- ► V.Barone, E.Predazzi, **High Energy Particle Diffraction**. Springer 2002

Aknowledgements

M.Arneodo, V.Avati, R.Benoit, R.Ciesielski, E.Robutti, ...