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Outline

■ Why Machine Learning (ML) and why relevant for us

■ Some theoretical bases (mostly empirical)

■ Why ML _now_

■ Possibilities in general and specifically in HEP
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■ Does not mean much, right?

■ As written, it includes a large variety of algorithms:
– A boost decision tree is ML (the system infers

decisions from a training sample)
– A MultiVariate Analysis is ML 
– To a certain extent, also Chi2 and Likelihood

could be seen as such

■ We are not covering these here … what we want to
explore is „Human Brain Inspired ML“

A tree showing survival of passengers on 
the Titanic ("sibsp" is the number of

spouses or siblings aboard). The figures
under the leaves show the probability of

survival and the percentage of
observations in the leaf. Summarizing: 

Your chances of survival were good if you
were (i) a female or (ii) a male younger than

9.5 years with less than 2.5 siblings.
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https://en.wikipedia.org/wiki/Titanic


Why inspire to human (brain)?
■ Well, for once, it is a fact that the human brain can

perform complex tasks – like writing slides (?)
■ The human brain is very efficient in tasks which we

have problems to write as an algorithm: cats or dogs?
– Classifications problem, with many inputs (images

are 400x400 = 0.5 MB)
– More complex tasks:
– Regression: 
■ How many cats? 
■ Estimate cat weight / size
■ Extrapolate in time / space (what happens in next

frame?)
– ~ finding laws of motion?

■ While the behaviour of the brain is mostly unclear as a 
whole, the basic component, the neuron, is well
understood

– And easy to model / simulate
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The biological model of a neuron

■ Nothing fancy, the brain power must be somewhere else
– Complexity: number of neurons, Connections

– The human brain has some 8.6 x 1010 (eighty six
billion) neurons. Each neuron has on average 7,000 
synaptic connections to other neurons. It has been
estimated that the brain of a three-year-old child has
about 1015 synapses (1 quadrillion). This number
declines with age, stabilizing by adulthood. Estimates
vary for an adult, ranging from 1014 to
5x1014 synapses (100 to 500 trillion).

– (From wikipedia)

A neuron collect inputs (at the 
dendrites) in the form of voltage or 
current, and combines them and if 
the (weigthed) sum goes beyond a 
threshold, a voltage is generated 
in the outputs (axions)
-- Concatenate at will …
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… and its simplified modellization in CS: 
the perceptron

■ A perceptron „fires“ (outputs) if the stimula (inputs) 
are beyond a certain threshold

■ In case of many stimula, they can be weighted
resembling the different potential thresholds in the
neuron dendrites/axions connections

■ Formula, all linear – forget the activation now

■ Let‘s try…
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■ Idea behind the neurological model is that
perceptron/neuron is easy, the number of
them/connections creates complex
behaviors

■ Let‘s try …

Add more complexity: one hidden layer

Not much gain: the 8 
weight parameters are 
indeed only 3 again

Still all linear in input; 
does not change if you 
insert mode layers
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A total failure ... Where is the trick?
■ The threshold (or if you want a non linear activation 

function) is the key to insert non linear behavior
■ Universal approximation theorem (Goodfellow, 2016 – non 

verbatim): even a single hidden layer network is enough to 
approximate any function of the inputs if non linearity is 
introduced at the activation level

■ Translates to: You can approximate any function of the
inputs with arbitrary precision having enough hidden
nodes and the right weights

■ This is in principle powerful, if we assume in the end a 
function to model the inputs is all we need

– Note the theorem does not state how large a layer 
and how complicated is the training! Such a network 
is NOT demonstrated to be optimal, just to “exist”

There is no strong request 
of the activation functions 
apart from not being 
linear. Many available in 
literature
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Practical example: a single input (x) needs 
to be mapped to a complex function

ReLu

bias

weight

9



All in all, you can see a ML system using
perceptrons
■ As a number of input channels (a real number, a bit, an R/G/B value for an image pixel, 

….)

■ A series of perceptrons organized in cascade

■ A number of outputs

■ What characterize the network are the geometry, the activation fuctions, and the value of
the weights à this uniquely describes the network

■ Apart from hyperparameter optimization, only the weights vary during training procedure

■ So in the perceptron formula, you can think the weights are the free parameters. How
many are they?
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The bias (a parentheses)
■ You want to be able to describe the “no input situation” 

with some non zero threshold
– In the current design 0 inputs à output will be 

zero

■ This is usually modelled with an additional input which 
connects to all perceptrons (in all layers), which has the 
value “1”

■ So indeed, a perceptron with 5 real inputs will have 6 
weights (5 for the inputs, 1 for the bias)

■ The “bias” input is usually not depicted in diagrams
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Counting DoFs

• First layer („input“): there are no
„weights“ – 0 dof

• Second layer („hidden“): 5 (perceptrons) 
* (4+1 bias) (weights) = 25 dof

• Third layer („output“): 1 (percepton) * 
(5+1) weights = 6 dof

• This simple (useless) network has 31 dof
(in reality less, there are global  and local
normalizations), you can consider it as

• O = (O (w1..w31)) (i1, .., i5)
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Function you need to optimize
(hyper-parameter optimization: you change also geometry)

In the following, you will see that the way to 
“train” the system on data is to minimize the 
difference of response on some validation 
samples ….
Automatically, this means already a 
minimization in 31 dimensions (which is not 
trivial)



How does training work?
■ You start from a fixed geometry and ~ random weights

■ You compare the output of the network with a training dataset where
you know the „correct answer“

■ You need 2 ingredients: 
– a way to know how far you are from the desired network behavior

(a „loss function“)
■ Think of it as chi2 between the prediction and the training truth
■ Most used loss function is “cross entropy“

– A way to „move the network“ in the right direction (a procedure
for applying changes to the weights)
■ (-)Gradients of the loss function as a function of the weights are the

direction of max change
■ Remember ~ all is linear (apart from the activation functions), so you

can work iteratively

■ In the previous example, you can consider (O (w1..w31)) as a function
with 31 dof, which you apply on a training set. You get the cross entropy
loss, and you minimize it by applying a gradient descent

■ That network was „useless“; todays realistic use cases have O(100k) –
O(1B) dof …
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Cross entropy and other loss functions

■ In high energy physics, and many other fields, there are two common use case for NN
– Classification (is this event from signal or is it from background?.. or actually what is the 

probability for it to be signal/background?)
– Regression (can I refine the value of an observable given other correlated features?)

■ What could be the loss in the two cases?
– Classification: the NN behaves badly if predicts “signal like” on background and “background 

like” on signal => a typical loss function is the binary cross entropy

- [ isSignal*log(NN(input)) + (1-isSignal)*log(1-NN(input)) ]
– Regression: the NN behaves badly if predicts the wrong value => typical loss is the Squared 

Error (for a single example, and its Mean Squared Error, MSE, for a full dataset)

(predictedValue - targetValue)^2
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That was the simplest network

■ „feed forward“ à All happens left to right, there is no „backward connection“

■ The research and (soon after!) the utilization of network has moved well beyond that
– Different types of networks
– Different types of training
■ Supervised, unsupervised, reinforced, …

– Different types of inputs and outputs

■ A picture from late 2016 à
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C(onvolutional)NN (1989)
LSTM (1997)
GANs (2014)
CapsNet (2017)
GraphNet (2018)
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A clarification: what is Deep Learning?

■ “Deep” does not mean “profound” or 
“insighful” … it just means ”with many 
intermediate layers”

■ But wait: Universal approximation theorem 
à one layer is enough! Why go “deep”?

– Nobody said how big extented layer
– Having horizontal stratification helps 

us (not the network) to identify pieces 
(“I put a convolution layer then a 
Dense layer then …”) 

■ Honestly, DL is functionally a synonymous of 
ML by now …
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Why are we caring about
ML today?
■ As from the previous slide, the field is not new

(50+ years)

■ The utilization of at least simple classificators
(„does this event look like signal?“) or even
proto-algorithms dates back at least to LEP
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15*(20+1)+10*(15+1)+1*(10
+1) = 486 weights / dof

Minimization not trivial with a 199x machine



Vector processing

■ 1 percetron operation is a scalar product of 2 
vectors

■ N percetrons can be seen as a Matrix·Vector
operation (which can happen simoultaneously
for all the perceptrons in a layer)

■ Also back propagation is nothing but matrix
algebra when you have turned to analytical
formulas

■ à vector processing (and matrix manipulation) 
are good candidates
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Today’s avaialble systems

■ GPGPUs are generic vector oriented computing 
systems, with poor serial programmng capabilities, 
but with an excellent vector instructions set

– They are also starting to have specific tensor 
cores, which is nothing but à

■ Tensor Processing Units are nothing but Matrix 
algebra engines

– They do only that, so they can be more 
specialized (another 10-30x today)

■ If you need more power, there are (still not optimal) 
ways to partition training on multiple nodes (MPI, for 
example)

– Sync the network between nodes. Train on 
different subsets of events, combine later. 
Repeat …
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Training resources 
for Science
■ Machine learning training is from slow to very slow, but it 

is not a big issue since it has to be repeated only a few 
times a year; instead it is generally fast at inference time 
(when using the training)

– At least ML algorithm using CNN or (D)FF are 
“simply algebra operations”: no loops, no 
recursion - fit well also common processors, using 
vector registers

■ If we could substitute standard reconstruction / 
simulation algorithms with trained ML algorithms, there 
is the hope to scale better with event complexity

– Examples later: tracking, particle-matter 
interaction

■ There are other interesting aspects with minor expected 
impact:

– Save smaller data via ML driven data compression 
(auto encoders)

– Operation supervision (anomaly detections, data 
certification) – potentially save manpower

■ Training also at large scale is not really an issue also 
because “we” are offered access to Super Computers 
(HPC) with hardware specifically tuned for that
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The direct effect is on the size of 
networks you can handle
■ 90s: O(1000) : a roundworm 

equivalent complexity

■ 2015: O(106) neurons: a bee

■ Human brain size equivalent 
expected in 20-30 y

Note that apart from # neurons, speed is different: 400 
Km/h vs c
Or if you want: 1 neuron fires ~ 1 msec *fully parallel), 
CPUs are @ GHz (but a lot of serialization) 22



.. And tools!

■ 20 years ago: fortran libraries, MATLAB, hand made 
code. SNNS was very famous

■ Only very simple networks available “ready to use”
– feed forward, basically

■ Today: very high quality industrial level libraries for 
generic tasks (TensorFlow, Torch,  Caffee)

■ An active community behind them: new network 
models out weeks after theoretical papers

■ KERAS is becoming the de facto standard in scientific 
computing, mostly via Python binding – as a frontend 
to for example TensorFlow

– Tensorflow: Google-made backend, handles 
CPU, GPU, even QuantumComputing (they 
say…); it is the workhorse for matrix algebra
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ML in HEP

■ Why is it interesting?

■ Let‘s use frontier HEP experiments @ HL-LHC as a benchmark
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LHC @ CERN
■ LHC is today’s top energy pp collider.

■ It started operations in 2009, and is now 
at the end of the second run period

■ At each “Run”, the collider improves, 
colliding particles in greater number, of 
greater energy, or with greater efficiency

■ The “physics capability” is measured in 
terms of “luminosity”, which is 
proportional to the number of events you 
can collect of a given type (in total or per 
unit time)

HL-LHC: High Luminosity LHC
LS: Long Shutdown

25
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2018 LHC Parameters (to 
set some numbers)
■ At an average luminosity of 1.2 1034

cm-2s-1, every 25 ns:
– 35 pp interactions, generating 

secondary particles à 1B pp 
interactions per second

– Particles have a fraction of the 
center of mass energy 6.5+6.5 
TeV, and fly away from the 
collision point

– They traverse the material 
surrounding the beam line, 
which we usually fill with active 
detectors
■ ~ 1 MB per selected event (@ 

1 kHz) 
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LHC Needs for 2026+

■ In 2026+, LHC will start its “High Luminosity” 
Phase, with parameters largely improved

– Average number of pp events per bunch 
collision 35 à 200 (6x)

■ At the same time much improved detectors, with 
increased # of acquisition channels (trackers, 
calorimeters)

– Bigger events, more complex reconstruction 
algorithms

■ Focus is still also on low mass physics. To do so, 
increase of trigger rate from 1 kHz to ~10 kHz not 
to loose too many Ws
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Extrapolated computing needs 

■ On paper, 6*10x = 60x (in the optimistic assumption all is linear)
– Forget it, does not fit any technology evolution. It would be Billions CHF per year

■ Experiments have already tuned down via internal optimizations

■ Latest “validated” numbers are still O(20x) larger than today’s resource deployment
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Task oriented use of ML in HEP

■ Where can ML help this situation (and HEP in general!)?
– Perform a series of tasks with fewer resources
■ For example have a faster reconstruction, thus requiring fewer PCs
■ Or use fewer FPGA gates for a given task

– Perform a task in a better way
■ Have a better S/N in a given channel
■ Have a better resolution in energy from a calorimeter

– Perform a single task within a given time frame
■ Be able to run @ trigger level something which otherwise would not fit a time 

budget
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Why should an ML approach be better
at these?
■ Be faster:

– Assume you have N inputs (deposits in a calorimeter?); standard algorithms for clusterization are
superlinear in the number of relevant deposits
■ Work on pair, triplets, … of signals

– A simple CNN is fixed in time (a fixed number of matrix multiplications)
■ Very good in a trigger system: guaranteed answerat a fixed latency

– Other types of network have recursion inside, and are not necessarily faster
– Note that we are referring to speed in using the network (inference)

■ The training speed is much slower, but generally ~ irrelevant (once per Y/M, …)

■ Be better at performance
– We have hints it can work (for example, btagging in next slides). On the why:

■ Should be linked to the fact that a Deep Network has millions of free parameters, and can grab correlations
at the level an (human made) algorithm cannot reach. I guess you all see the risk here. I am not sure there
is a definite answer on WHY it works
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And if ML: can we use industry standard
algorithms directly?

■ If you take Keras, you have access to literally months / weeks old
algorithms

– If they work for you, you are in the best position: some else
does the job from arxiv paper to a code you can run

– If they do not, you are in a worse trouble
■ Some positive examples:

– Whatever can be treated as a (pixelated) image, is in 
marvellous shape

– Everything which is a time series, is in marvellous shape
■ Some negative examples:

– Everything which has a variable # of inputs, is not typical in 
industry

– Everything which is connection between objects, is starting
to be available only now

– If your geometry is not rectangles in (x,y), you are on your
own
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Let‘s see example by ML category

■ Simple characterization:
– Simply an evolution of likelihoods: take as many input variables you

can, even poorly different between category A and B, and hope / 
assume the network will find correlations

■ Classical example: identification of jets originating from b quarks @ LHC
– 2000-2010: use simple and understood single track features

■ Displaced vertex, IP significance, presence of a displaced lepton, …

– 2010-2015: use more features (like all the closeby track
parameters) and build a likelihood ratio-based discriminator

– 2015+: add more features, and use a ML system
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Inputs = 663
7 hidden layers
>200k „weights“

33

10x from single 
track to 
probabilistic 
approaches

5x from 
probabilistic 
approaches to 
likelihood

5x from 
likelihood to 
Deep Learning



Image reconstruction or alike
■ Applies well to 2d-3d-4d detectors with finite sizes

(Pixels, Strips, Calorimetry Cells)

■ Pattern recognition in images is a major industry
task: lots of code, experience, theory, …

– Machine autodriving, defects in products of
assembly lines

■ First ingredient is usually convolutional neural
network: idea is to deduce complexity by allowing
for translational invariance

– Count/locate the windows: a window is a 
„local feature“ independent of absolute 
position in the image

■ CNNs allow to identify local features, with more
complex analyses (window size, material, …) 
following using the reduced complexity

■ What follows depends on what you want to do
– Identify?
– Count?
– Measure?
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Where in HEP?

■ We have many detectors whose
response can be naturally
described as 2-3-4d images

35

From images to a 
“movie” (4 
photograms in 
this case)



Concrete example: jet energy
reconstruction
■ Standard algorithm: estimate response in a H-CAL 

and in a E-CAL, and do some sort of weighted sum

■ DL algorithm: input the 3-4d (time slices) readout 
in the vicinity of the jet axis, identify locally clusters 
via CNNs, get global single-CAL response, combine 

■ Inputs are (25*25*25+5*5*60 = 17k); one 
output («jet energy»)

■ Free parameters («weights») are ~ 1M

■ All these network components are working @ a 
fixed timing
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(ref)

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf


Concrete example: track seeding in 
pixel layers

37
(ref)

Performance similar to standard 
JetCore, 6x faster

https://indico.cern.ch/event/742793/contributions/3274301/attachments/1822584/2981871/bertacchi_deepcore_ConnectingTheDots.pdf


Series and alike
■ Use DL tools designed for language processing

■ When you say «ok google, is it going to rain today in Florence?», the system gets:
– «is / it / going /to» … (not much info on what is requested .. discard)
– «rain» … ah so it is something «weather like» (first categorization)
– «today» … in the category weather, I will need to see «today’s» forecasts as a 

subcategory
– «in Florence» … ok now I know where
– «(pause)» … question is over à I can answer

■ Networks able to handle an undefined number of inputs are usually mapped as Recurrent
Neural Networks: you generate «memory» of the previous step by connecting the output to the 
input

■ The most used are Long Short-Term Memory
– You use a word at a time as input, but he network has «memory» between calls (not a 

simple perceptron)
– The memory fades with time. Low correlation of what you said 20 words ago with the 

current
– There is a stop signal which means «inputs are over»

■ Where we can use them?
– In all the cases where the number of inputs is undefined a priori
– Typically orders matter, which is not always true for us à 38



Cluster/identify tracks/deposits in a Jet
■ We already saw it can be done as images

– But while CAL are «pixelated» by construction, track parameters are not: using
the same approach on them »worsens the resolution»

■ Keep pushing tracks (parameters) to the network until done

■ Each new track refines the knowledge
– Timing is now not fixed, but scales with the # of inputs
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LSTM

Dense NN

(ref)

Discrimination Z’ à tt vs QCD

https://arxiv.org/pdf/1711.09059.pdf


Monte Carlo Simulation
■ Today Geant 4 based simulation uses ~ 30-50% of the total CPU utilization in 

LHC experiments
– Translate into some x10 MEur/y

■ What is Geant4?
– Iterative approach, where N particles traverse M volumes and interact
– Timing ~ NxM, and in LHC Phase 2

■ N scales with PU is you are not too smart) and with the precision one
wants to have n the measurement (> 6x)

■ Volumes can scale trastically with upgraded detectors (CMS Phase1 G4 
geometry: 2M volumes; CMS Phase2 G4 Geometry: 20 M volumes)

■ Today ATLAS needs 6 min/event …

■ Approach is ab-initio: 
1. Inject initial particles
2. follow particles in the detector geometry
3. deposit energy, generate secondaries
4. final detector response is the sum of these + some simulation of 

electronic response …
– Only #4 is compared with data, and in the end only that is the relevant

quantity

Inject
particle(s)

Sum Sensitive 
Detector 

energy losses

Xsecs for 
physics

processes

Navigate in 
geometry

G4 w
ay

ML approach: 
directly to the 
only relevant

result
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How is that different from a standard 
Fast Simulation?

■ «standard Fast Simulation»: 
– Run Geant4 (tuned on test beam data) or 

use real data when available
– Define the N relevant distributions

(resolutions, energy scales, residuals, …)
– Parametrize them (gaussians or 

whatever) and define resolution functions
to be applied to smear input data

■ Limits:
– N cannot be large
– Difficult to have correlations (non 

diagonal terms in the resolution matrix for 
example) under control A lot of work by 
hand

■ ML approaches
– Can be many (like simple NN to 

reproduce the final signal
distribution expected from Geant)

– … but it is today recognised as
the most clear field of application
for Generative Adversarial
Network (GANs)à
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GANs

■ Generate an algorithm (a network) putting minimal knowledge into the system, and 
not be attached to specific input dataset à need the system to understand the «rule» 
(the «physics»!)

■ Inspired / applied to Game theory: AlphaGO Zero used that
– AlphaGO: version which defeated the World Champion in 2016, trained on 30 

million GO moves from an historical database. A «standard large» FF NN
– AlphaGO Zero: end 2017, no use of moves database

■ Start from «noise» (random moves) and 2 AlphaGO isntances playing together
■ Evaluate the goodness of each instance from the rate of final outcomes (no 

move by move analysis, which restricts to what a human understands of GO)

■ So, instead of a AI trying to reproduce what human believes is the correct answer, an 
AI fighting with another AI 

■ How does it help for us? à
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Training ….

https://lh3.googleusercontent.com/atTt6Okt1LQIjIAF225ptfDdCtndp-OD4ZNPAmxTEAESk-sRvQg0cHbULyxh4wci7QH_TD3jIMGWMraOZHPW-C9UU6ZUx9jN4yms3g=w1440-rw-v1


GANs for detector simulation
■ Let’s say you want to have the response from an 

incoming particle(s) in a calorimeter cell

■ You have examples from Geant4 and from test 
beam data; you want to have a NN response
which looks indistinguishable from these

■ Put 2 networks one against each other
– One start from no knowledge, and basically

fires a random response
– The second looks at it and at the examples, 

and tried to understand which is the «AI 
generated one» (after having been trained
on the examples)
■ Initially it is very easy
■ But the choice is used by the first AI as a 

feedback («this was not what was expected» 
to retune itself)

■ At the end of the process, the second net 
will reach 50% success rate à the first is
tuned
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LHCb – E(m)CAL

No miracle happening: «what you
train the discriminator for is very
good, the rest varies 44

(ref)

https://indico.cern.ch/event/773049/contributions/3474741/attachments/1937484/3216167/GAN_FastsimLHCb_CHEP_191104_v2.pdf


LHCb - RICH

■ η

in
cr

ea
si

ng
p

increasing η
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• Train a Generative model to go from track kinematics to ID 
variables

• Possible directly on data ( “pure” calibration samples)
• Latent space 64 à 256 discriminator output

(ref)

Classification 
difference real 
/ gen data
(% or better)

https://cds.cern.ch/record/2678418/files/1905.11825.pdf


CMS – Jet reconstruction
■ Moving out of the simulation of 

a single detector with Geant4: 
include also reconstruction

■ CaloJets @ CMS: Anti-kt05 can 
be applied

– To cluster generator level
particles

– To cluster reconstrusted
particles (@PF after G4)

■ And compared to a GAN 
prediction

The «truth»

The «full»
algo

The «fast»
algo
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(ref)

https://arxiv.org/pdf/1805.00850.pdf


Why do so at all?
■ In the end the net result is

something which reproduces well
Geant4

– Use directly that!

■ The resulting „generator“ network
(after the adversarial phase) is still a 
network of the type we defined; in 
particular if no recursion is used, 
operates in finite time

■ Factor >1000x in speed found

47

(ref)

https://iopscience.iop.org/article/10.1088/1742-6596/1085/3/032016/pdf


Autoencoders
■ Autoencoders are networks which try and lower the dimensional representation

(its latent space) of given inputs – with no direct guidance

■ In other words, try and discover a representation of the input (with dimensionality
M) as N numbers

■ Compression algorithms (lossy) can be constructed in this way, by trying to force an
output as close as possible to the input (makes sense for N not too small wrt M)

■ If N is small, the chance to get back the original event is excluded, but you can still
use the approach to have the network «learn» typical features of the events

■ Why is this interesting? In some cases, you know what is B, not sure what is S
going to be

■ In physics: blind searches for «anything which does not seem a SM backgroud» (model 
independent)

– Anomaly searches!

■ Select some high level features of events (number and type of jets, leptons, ….)

■ Take
– Either SM MC
– Or even Data (assumes what you search for is rare enough)

■ Train a network which tries to reduce dimensionality, and back
Example with M=21 inputs, and N=8 internal („latent“) dimensionality

N valuesM values M values

48

21

4x2

21

(ref)

https://arxiv.org/pdf/1811.10276.pdf


■ Train on a mixture of SM processes -
balanced as in nature – seeding from 
the presence of a High Pt Lepton @ L1

■ Use GAN to decrease dimensionality to 
8 features in latent space

■ Define a cut on the Loss to identify 
“non fitting” events

– Cut depends defined as how many 
false positives you are willing to 
accept (if you want, manpower 
related: someone will need to 
scrutinize them)

■ That completely 
defines the 
systems, which 
can a posteriori 
be tested on 
some NP models

1000 SM events/month 
@ 1034
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How to use it?

■ Tuning the „false SM positives“ @ 
1000/month you get an efficiency on those
NP models & a number of predicted events
per month

– Or, looking the other way round, the
xsec needed to get 100 events/month
from that process

■ Interesting point: if you train from data (the
ultimate goal), clearly your performance get
worse if the NP signal is present & 
abundant

– Incresing „pollution“ of Aà 4l 100x 
reduces performance by 10x, but you
still gain overall
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GraphNets
■ Up to now we have seen networks able to

– Categorize an “event” given a list of features with possible some 
“truth” samples

– Via Regression, compute a quantity / series of quantities

■ Some tasks in HEP are not seen in these categories
– Tracking in Silicon Devices: you have the silicon hits, you need to 

associate those coming from the same particle
– Clustering in Calorimeters/Silicon Devices: given a set of single 

channel responses, you need to decide which come from the 
same particle

– Particle Flow in HEP: given a set of objects (tracks, calorimeter 
clusters, leptons), match them 

– Vertex finding in tracking detectors: associate tracks originating 
from a common vertex

■ You are not creating / destroying hits / measuring quantities, but 
finding links / relations between existing objects

– Measuring is “later”: once you have decided a set of hits belongs 
to the same particle à Standard Kalman Fitter

The output of the net is not 
the type / position / of the 
nodes (hits), but their 
interconnection graph, with 
a strength
• strength can be seen as 

proportional to the 
degree of certainty
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(ref)

https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf


ML @ Trigger level

■ Triggers are a very special environment in HEP
– Again LHC/CMS example L1 trigger: O(10usec) available for a decision
– It includes the time to build the event and to transfer it
– Most L1 decisions use local (only a detector slice) or coarse information

■ No place for a Linux PC… Can ML still be useful?

■ Typical setup and resource availability for a L1 hardware is FPGAs
– They run in deterministic time
– They are fast enough, with a native latency ~ 100 ns

53



idea
■ Run / test / train a network with standard means 

– Keras + tensorflow un Linux PC (with GPU) using 
real / emulated input data

– Once you get the performance you are 
requesting, “dump the network” (geometry + 
weights)

■ At least 2 HEP made tools allow to dump the network 
on a FPGA and run inference there

– CERN’s hls4ml
■ R&D for L1 triggering @ CMS (jet classification)

– UniPG’s BondMachine
■ Uses the concept to deploy a processor in FPGA 

per perceptron: completely parallel!
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(ref)

(ref)

https://github.com/hls-fpga-machine-learning/hls4ml
http://bondmachine.fisica.unipg.it/
https://arxiv.org/pdf/1804.06913.pdf
http://inspirehep.net/record/1766692/files/PoS(ISGC2019)020.pdf


So, summary of possible utilizations of 
ML in HEP
■ Simulation:

– GANs tuned on Geant4 / data to replace the bulk of the simulation

■ Reconstruction
– Piece by piece substitution on single algorithms with ML counterparts
– Typical networks would be CNNs, GraphNets, …

■ Analysis
– Classification of events in categories, S/N, anomaly detections

■ Is there more? At least 2 things I want to cite
– ML for “detector operations”
– Attempts to “replace us”
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Detector operations

■ HEP needs lots + increasing manpower to insure
– Data quality and detector health
– Optimal data distribution and access for 

analysis
– The continuous operation of the various 

services (broken hardware, generic 
failures) 

■ 2 options to showcase:
1. Treat the images as … images and train a 

CNN to discriminate good/bad statuses
■ Problem: you have to have a clear idea of 

WHAT and HOW can go wrong

56(ref)

https://arxiv.org/pdf/1808.00911.pdf


Anomaly detection for operations

2. Train on good data periods, and use an autoencoder 
similar to the one used to discover NP
– Choose some relevant quantity to monitor (# of 

hits, # of jets …) à 401 variables
– For each variable, describe the distribution (5 

quantiles, mean, rms) à 401x7 = 2807 input 
per each small period of data taking (assumed 
uniform)

– Autoencode with a latent space of dimension 
500

– Assumption is that bad data periods will stick out 
as bad (large difference input/output)

57
(ref, ref)

https://indico.cern.ch/event/708041/contributions/3276189/attachments/1811339/2958493/ACAT_Data_Certification_with_Deep_Learning.pdf
https://indico.cern.ch/event/766450/contributions/3225159/attachments/1763842/2862748/ML_for_DQM_and_DC_in_CMS_11.pdf


In a not too distant future?

■ Today ML is a piecewise replacement to 
some algorithmic steps in our workflow 
from raw data to the final analysis plot

– Steps remain basically the same

■ Is it the only option?

■ Why not try an all-inn approach?
– A network (system?) which inputs 

RAW data and outputs a “physics 
relevant quantity”

– It is feasible?

RAW 
Data

Repack / transform

Local detector 
reconstruction

1010001
0

RAW 
ROOT files

Hits, 
clusters, 

…

(More)global detector 
reconstruction

Tracks, 
jets

(Even more)global 
detector reconstruction

Leptons
HF jets

Interpretation / analysis Plots
Numbers

ML

ML

ML

ML

ML
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■ Train a very large ML system to start from RAW detector 
data, and give a final event characterization
(Higgs/QCD/Upsilon/JPSI/…)?

■ It is defintely too early; for example how to feed 1-100M 
(RAW data ZS/unZS size) inputs to a network? How to 
have enough events for training? How to define «what is
interesting»?

■ Still we can try with a simplified model: 
– clean events (no pile up)
– only tracking detectors (CMS Pixels)
– Reduce granularity of input

■ Idea: take pictures of the hits in the CMS pixel tracker, 
from different views (xy, xz, zy), as lowish resolution
Jpegs (to reduce the # of inputs) 

– 300x300 images = 90k (very sparse) inputs

(ref)

https://indico4.twgrid.org/indico/event/4/session/15/contribution/62/material/slides/0.pdf


Event categories and results
■ Use 4 event categories

– Higgs decays to tau leptons
– QCD (strong interactions)
– Jpsi decays (to 2 muons)
– Upsilon decays (to 2 muons)

■ And train with ~10k simulated events per category

■ It works! Are we done? No…
– Model very simplified
– Never tried on complex events

(add 35 pp interactions and see..) 
– Eventually, who would trust the result now?
– Who sets the training samples?

■ Ideally, it should work in an anomaly
search mode

Medium event
complexity

Low event
complexity

Low event
complexity

High event
complexity
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(each category against all
others)
Note that Upsilon vs Jpsi
signatures are quite similar
but still perfomance
acceptable

No more needs

for physicists!



ML_INFN
■ Approved CSN5 Experiment starting on Jan 1st 2020

■ Large participation, also from Florence

■ Plan is to start organizing the workplan as soon as back from the break with a planning  meeting
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Conclusions

■ ML is emerging as a possible solution for some of the pressing problems in HEP
– Reducing the computing resource needs
– Going beyond the performance of standard human written algorithms

■ The good news is that we can count on a very strong sw/hw ecosystem from industry
– Quite un-typical for HEP, we usually love to start from scratch

■ The bad news is that finding your path is difficult
– Which networks to use? Which hardware? How to interpret the results?
– Definitely needs some guidance … efforts are starting à ML_INFN
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