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Outline

m Why Machine Learning (ML) and why relevant for us
m Some theoretical bases (mostly empirical)
m Why ML _now_

m Possibilities in general and specifically in HEP




Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to

perform a specific task without using explicit instructions, relying on patterns and inference instead. It is seen as

a subset of artificial intelligence. Machine learning algorithms build a mathematical model based on sample wikipedia
data, known as "training data", in order to make predictions or decisions without being explicitly programmed to

perform the task.['2]2 Machine learning algorithms are used in a wide variety of applications, such as email

filtering and computer vision, where it is difficult or infeasible to develop a conventional algorithm for effectively

performing the task.

m Does not mean much, right? 's sex male?

m As written, it includes a large variety of algorithms: sage> 0y (Sued)
- A boost decision tree is ML (the system infers 4 \
decisions from a training sample) gﬁ, 's sibsp’i
- A MultiVariate Analysis is ML (Garvived)

0.05 2% 0.89 2%

- To a certain extent, also Chi2 and Likelihood
could be seen as such

A tree showing survival of passengers on
the Titanic ("sibsp” is the number of

m We are not covering these here ... what we want to spouses or siblings aboard). The figures
. . . « under the leaves show the probability of
explore is ,Human Brain Inspired ML survival and the percentage of

observations in the leaf. Summarizing:
Your chances of survival were good if you
were (i) a female or (ii) a male younger than
9.5 years with less than 2.5 siblings.



https://en.wikipedia.org/wiki/Titanic

Why inspire to human (brain)?

m Well, for once, it is a fact that the human brain can
perform complex tasks - like writing slides (?)

m The human brain is very efficient in tasks which we
have problems to write as an algorithm: cats or dogs?

— Classifications problem, with many inputs (images
are 400x400 = 0.5 MB)

- More complex tasks:
- Regression:
m How many cats?
m Estimate cat weight / size

m Extrapolate in time / space (what happens in next
frame?)

- ~finding laws of motion?

m While the behaviour of the brain is mostly unclear as a
whole, the basic component, the neuron, is well
understood

- And easy to model / simulate




The biological model of a neuron

m Nothing fancy, the brain power must be somewhere else

Complexity: number of neurons, Connections

The has some 8.6 x 10%° (eighty six
billion) neurons. Each neuron has on average 7,000
synaptic connections to other neurons. It has been
estimated that the brain of a three-year-old child has
about 10%° synapses (1 quadrillion). This number
declines with age, stabilizing by adulthood. Estimates
vary for an adult, ranging from 10*4 to

5x10** synapses (100 to 500 trillion).

- (From wikipedia)

A neuron collect inputs (at the
dendrites) in the form of voltage or
current, and combines them and if
the (weigthed) sum goes beyond a
threshold, a voltage is generated
in the outputs (axions)

— Concatenate at will ...


https://en.wikipedia.org/wiki/Human_brain

... and its simplified modellization in CS:
the perceptron

m A perceptron ,fires (outputs) if the stimula (inputs)
are beyond a certain threshold
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wye
——2 o
Iy 11
resembling the different potential thresholds in the y O '
neuron dendrites/axions connections Ma -
A2
m Formula, all linear - forget the activation now Mo,

m Let'stry..

My
7

v;i/ o W!')(y + W W VJ}'V(},




Add more complexity: one hidden layer

M4
m |dea behind the neurological model is that
perceptron/neuron is easy, the number of )C N
them/connections creates complex 2 (;L
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A total failure ... Where is the trick?

m The threshold (or if you want a non linear activation
function) is the key to insert non linear behavior

m Universal approximation theorem (Goodfellow, 2016 - non
verbatim): even a single hidden layer network is enough to Lot .S or ot
approximate any function of the inputs if non linearity is
introduced at the activation level

m Translates to: You can approximate any function of the
inputs with arbitrary precision having enough hidden
nodes and the right weights

[ ] T' v - - [15] - 0 for €Zr S 0
£ Rectified linear unit (ReLU) f(z) = b e
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and how complicated is the training! Such a network
is NOT demonstrated to be optimal, just to “exist”

Inverse square root linear unit (ISRLU)['4]

Rectified linear unit (ReLU)!'®!

43 = /)‘ f (W fﬁ)'K; i w;ﬁ%t Lt 3(‘2}( }) + A feedforward network with a single layer is
} — 13 sufficient to represent any function, but the layer
may be infeasibly large and may fail to learn and
é)’z‘ (U.: 1('%-%3 W»L£ -;).‘ébf w,f g})()) generalize correctly.
—TIan Goodfellow, DLB
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There is no strong request
of the activation functions
apart from not being
linear. Many available in
literature



Practical example: a single input (x) needs
to be mapped to a complex function

)
X2+ x2-x-1 /
N0,

: w e— O

ny(x) = Relu(—5x — 7.7)
na2(x) = Relu(—1.2x — 1.3)
n3(x) = Relu(1.2x + 1)
ng(x) = Relu(l.2x — .2)

-2 ns(x) = Relu(2x — 1.1)
ne(x) = Relu(5x — 5)




All in all, you can see a ML system using
perceptrons

m As a number of input channels (a real number, a bit, an R/G/B value for an image pixel,

)

m A series of perceptrons organized in cascade
m A number of outputs

m What characterize the network are the geometry, the activation fuctions, and the value of
the weights - this uniquely describes the network

m Apart from hyperparameter optimization, only the weights vary during training procedure

m So in the perceptron formula, you can think the weights are the free parameters. How
many are they?
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The bias (a parentheses)

You want to be able to describe the “no input situation”
with some non zero threshold

- In the current design O inputs = output will be
Zero

My
This is usually modelled with an additional input which
connects to all perceptrons (in all layers), which has the At
value “1” "
So indeed, a perceptron with 5 real inputs will have 6 Mo

weights (5 for the inputs, 1 for the bias)

The “bias” input is usually not depicted in diagrams

11
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Counting DoFs

* First layer (,input): there are no '“_.®
,weights“ - O dof >
» Second layer (,hidden“): 5 (perceptrons) Input o
* (4+1 bias) (weights) = 25 dof _*

* Third layer (,output®): 1 (percepton) * o -
(5+1).weights = 6 dof e 75N O/

* This simple (useless) network has 31 dof
(in reality less, there are global and local
normalizations), you can consider it as

In the following, you will see that the way to
“train” the system on data is to minimize the
difference of response on some validation

* O0=(0(wl.w31)) (i1, .., iD)

samples ....

Automatically, this means already a
Function you need to optimize minimization in 31 dimensions (which is not
(hyper-parameter optimization: you change also geometry) tI’iVi a |)

12




How does training work?? fGx,y,2) = (x+ )

m You start from a fixed geometry and ~ random weights

m You compare the output of the network with a training dataset where
you know the ,correct answer”

m You need 2 ingredients:

- a way to know how far you are from the desired network behavior 3
(a ,loss function®)

m Think of it as chi2 between the prediction and the training truth

m Most used loss function is “cross entropy” f - qz q =X+ y

- A way to ,move the network” in the right direction (a procedure
for applying changes to the weights)

gy _9%u
m (-)Gradients of the loss function as a function of the weights are the ox 0q 0Ox
direction of max change
m Remember ~ all is linear (apart from the activation functions), so you g g
can work iteratively 55 = 1, = 1

m |n the previous example, you can consider (O (wl..w31)) as a function

with 31 dof, which you apply on a training set. You get the cross entropy of of
loss, and you minimize it by applying a gradient descent — = =

m That network was ,useless”; todays realistic use cases have O(100Kk) -
O(1B) dof ...
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Cross entropy and other loss functions

m |n high energy physics, and many other fields, there are two common use case for NN

- Classification (is this event from signal or is it from background?.. or actually what is the
probability for it to be signal/background?)

- Regression (can | refine the value of an observable given other correlated features?)

m  What could be the loss in the two cases”?

- Classification: the NN behaves badly if predicts “signal like” on background and “background
like” on signal => a typical loss function is the binary cross entropy

[ isSignal*log(NN(input)) + (1-isSignal) *log(1-NN(input)) ]

- Regression: the NN behaves badly if predicts the wrong value => typical loss is the Squared
Error (for a single example, and its Mean Squared Error, MSE, for a full dataset)

(predictedValue - targetValue)™2

14



That was the simplest network

m ,feed forward“ - All happens left to right, there is no ,backward connection*

m The research and (soon after!) the utilization of network has moved well beyond that
- Different types of networks

— Different types of training
m Supervised, unsupervised, reinforced, ...

- Different types of inputs and outputs
m A picture from late 2016 >

15



Deep Learning Timeline
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A clarification: what is Deep Learning?

“Deep” does not mean “profound” or
“insighful” ... it just means "with many
intermediate layers”

But wait: Universal approximation theorem
— one layer is enough! Why go “deep”?

- Nobody said how big extented layer

- Having horizontal stratification helps
us (not the network) to identify pieces
(“l put a convolution layer then a
Dense layer then ...”)

Honestly, DL is functionally a synonymous of
ML by now ...

Simple Neural Network

Deep Learning Neural Network

RN
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W hy are we Cca r| N g a bo ut Use of neural network to search for

rare B decays in ALEPH at LEP

M I to d ay -; Philippe Rosnet X, Pierre Henrard & X

Show more

https://doi.org/10.1016/S0168-9002(97)00098-3 Get rights and content

m As from the previous slide, the field is not new
(50+ years)

Kink Finding in the Aleph TPC Using Neural

proto-algorithms dates back at leastto LEP Networks

Article in Modern Physics Letters A 8(29):2715-2727 - September 1993 with 10 Reads @
DOI: 10.1142/S021773239300310X
Y, Cite this publication

sis. The final selection leads to 20 input variables [5].

3. Learning step and validation 1 5 * (20 + 1) + 10* ( 1 5 + 1) + 1* ( 10
Two hidden | ith, tively, 15 and 10 .
are necessary to obtain a good separation between signal +1) = 486 weights / dof

and background. The last layer with one neuron nor-

malized between —1 (for b —c hemispheres) and +1

(for b - u hemispheres) gives the output of the neural .. . .. . i
network. ’ ¢ b Minimization not trivial with a 199x machine
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Vector processing

| |
PER AR

m 1 percetron operation is a scalar product of 2 / » _/ (Z X L)
vectors ?b g . /

m N percetrons can be seen as a Matrix-Vector
operation (which can happen simoultaneously - -~

for all the perceptrons in a layer) \
-) A

m Also back propagation is nothing but matrix 7. ’. ( \/\/{Z
algebra when you have turned to analytical (3 Co
formulas l / |

m —> vector processing (and matrix manipulation) Dector o bt odter

are good candidates Lnctions
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Today’s avaialble systems

m GPGPUs are generic vector oriented computing
systems, with poor serial programmng capabilities, » R -
but W|th an exce”ent VeCtOF IﬂStI’UCtIOﬂS Set 3 14.2 TFLOPS! of peak single precision (FP32) performance

_ They are aISO_StaI’ting tO have SpeCIfIC teI’)SOI’ 3 28.5 TFLOPS! of peak half precision [FP16) performance
cores, which is nothing but >

3 14.2 TIPS! concurrent with FP, through independent integer execution units

3 113.8 Tensor TFLOPS'2

m Tensor Processing Units are nothing but Matrix Dwsiearayssec 1 TFlops = 1012 ops/sec
algebra engines [3 78 Tera RTX-OPS

- They dO Only tha t7 SO they can be more = GPU/CPU = TPU/CPU = TPU/GPU = TPU//CPU = TPU/GPU
specialized (another 10-30x today) 250

200

m |f you need more power, there are (still not optimal)
ways to partition training on multiple nodes (MPI, for
example)

- Sync the network between nodes. Train on
different subsets of events, combine later.
Repeat ...

150

100

50

TFlops/W ratio

TotalPerformance/Watt Incremental Performance/Watt
(including host CPU) (no host CPU)
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Training resources
for Science

Machine learning training is from slow to very slow, but it
is not a big issue since it has to be repeated only a few
times a year; instead it is generally fast at inference time
(when using the training)

- At least ML algorithm using CNN or (D)FF are
“simply algebra operations”: no loops, no
recursion - fit well also common processors, using
vector registers

If we could substitute standard reconstruction /
simulation algorithms with trained ML algorithms, there
is the hope to scale better with event complexity

- Examples later: tracking, particle-matter
interaction

There are other interesting aspects with minor expected
impact:
- Save smaller data via ML driven data compression
(auto encoders)

- Operation supervision (anomaly detections, data
certification) — potentially save manpower

Training also at large scale is not really an issue also
because “we” are offered access to Super Computers
(HPC) with hardware specifically tuned for that

(¢

ALCF 2021 EXASCALE SUPERCOMPUTER - A21

Intel/Cray Aurora supercomputer planned for 2018 shifted to 2021
Scaled up from 180 PF to over 1000 PF

Support for three “pillars”
L RO

"

""nll1\Il||||m|||||||\\Ih’mlhhhl\‘m‘"‘“‘7

Pre-planning v
i review Design review
i @ Reébaseline review
NRE contract award4p i
{” 4Build contract modification

ALCF-3 Facility and Site Prep, Commissioning
ALCF-3 ESP: Application Readiness
i NRE: HW and SW engineering and productization

Build/Delivery

CY 2021

Acceptanced
CY 202

oY 2017 CY 2018 CY 2019 CY 2020

US Department of Energy Supercomputers

CPU Architecture AMD EPYC Intel Xeon Scalable IBM POWER9
(Future Zen)
GPU Architecture | Radeon Instinct Intel Xe NVIDIA Volta
Performance (RPEAK) 1.5 EFLOPS 1 EFLOPS 200 PFLOPS
Power Consumption ~30MW N/A 13MW
Nodes 100 Cabinets N/A 3,400
Laboratory Oak Ridge Argonne Oak Ridge
Vendor Cray Intel IBM
Year 2021 2021 2018

Frontier: Powered by Cray & AMD
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The direct effect is on the size of
networks you can handle

g 10 €— | Human
m 90s: O(1000) : a roundworm S 100} —
o o Q 10() N ‘
equivalent complexity = %F « [ Octopus)
- 5 (=
2 N
S 10%f
; 102 F LN
= 10Y
m 2015: 0(10°) neurons: a bee 2 101f
5 102 | PP
Z 1950 1985 2000 2015 2056

Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from ( ).

Note that apart from # neurons, speed is different: 400
Km/h vs ¢

Or if you want: 1 neuron fires ~ 1 msec *fully parallel),
CPUs are @ GHz (but a lot of serialization) 2

m Human brain size equivalent
expected in 20-30y
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m 20 years ago: fortran libraries, MATLAB, hand made
code. SNNS was very famous

m Only very simple networks available “ready to use”
- feed forward, basically

m Today: very high quality industrial level libraries for
generic tasks (TensorFlow, Torch, Caffee)

m An active community behind them: new network
models out weeks after theoretical papers {

m  KERAS is becoming the de facto standard in scientific | Tensdr
computing, mostly via Python binding - as a frontend
to for example TensorFlow

- Tensorflow: Google-made backend, handles
CPU, GPU, even QuantumComputing (they
say...); it is the workhorse for matrix algebra




ML in HEP

m Why is it interesting?

m Let's use frontier HEP experiments @ HL-LHC as a benchmark
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LHC @ CERN

m LHC is today’s top energy pp collider.

m [t started operations in 2009, and is now
at the end of the second run period

m At each “Run”, the collider improves,
colliding particles in greater number, of
greater energy, or with greater efficiency

m The “physics capability” is measured in
terms of “luminosity”, which is
proportional to the number of events you
can collect of a given type (in total or per
unit time)

Luminosity [cm™2s7]

Large Hadron Collider (LHC)
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2018 LHC Parameters (to
set some numbers)

m At an average luminosity of 1.2 1034
cm?s?t every 25 ns:

- 35 pp interactions, generating
secondary particles =2 1B pp
Interactions per second

- Particles have a fraction of the
center of mass energy 6.5+6.5
TeV, and fly away from the
collision point

- They traverse the material
surrounding the beam line,
which we usually fill with active

detectors
m ~ 1 MB per selected event (@
1 kHz)

CMS Experiment at the LHC, CERN g
Data ded 2 5012 46043 GMT(04: 2 DT




LHC Needs for 2026+

In 2026+, LHC will start its “High Luminosity”
Phase, with parameters largely improved

- Average number of pp events per bunch
collision 35 =2 200 (6x)

At the same time much improved detectors, with

increased # of acquisition channels (trackers,

calorimeters)

- Bigger events, more complex reconstruction

algorithms

Focus is still also on low mass physics. To do so,
increase of trigger rate from 1 kHz to ~10 kHz not

to loose too many Ws

010203 04 05 06 07 08 09 1 1,1 1,2 1,3 1,4 1,5
/' / 1,6
r [mmj 17
1200 .
1100 e — e —— - 1’8
owsrsamar —————— | | }7] | | | |
8 -k
D e e ————— 2’2
o 2.3
= 0% A
R e S e e i B 2,5
innerBarrel | — — — | | L1 | | |41 | |
(TIB) pp———a I i B I B |
:______._1 [ Endosp
Pixel Bam 10D m— Inner Discs (3
— (TPR) == z—_ (TID)
p 400  BOO  BOD 1000 100 1400 180D 1800 N0O 2200 2400 2000 2000 Z[mmj p+
Plxol Encap
(TPE)
0.0 02 04 06 08 1.0 1.2 14
_ L / / 16
E 1200 p—
E -
o y I TR T, I
E I, ll [ I 20
800 f— [ I I I -
B I, I Il] Il| |22
o00f— |- I | | v
E= N R YR YR SR N . . My My My —
S My My Iy My My L 26
L]~ RN O NR IR ST W T W My Wy iy iy My | 28
f=———— mooy n n n ™ 30
- A N N L N W ) ) n n 3.2
E’ 4.0
% i R— 060 00 n
z (mm]
Table 7. basic parameters fro next generation of colliders, as known to-date.
Collider Opera- Length Parti- Type Cms Instantaneous Superimposed
tions start  (km) cles collision luminosity (10 PP
date collid- energy em s interactions
ing (GeV)

LHC (for 2009 27 pp Circular 7000, 8000, Upto2 60 (peak),
refer- 13000, 14000 35(average)
ence) 27

HL-LHC 2026 27 pp Circular 14000 5,75 200




Extrapolated computing needs

m On paper, 6*10x = 60x (in the optimistic assumption all is linear)
- Forget it, does not fit any technology evolution. It would be Billions CHF per year

m Experiments have already tuned down via internal optimizations

m Latest “validated” numbers are still O(20x) larger than today’s resource deployment

R e S e LA S e e ™

L ATLAS Preliminary - ATLAS Preliminary 1

) o
) o
i > - — (2} - -
3000 Data on disk by tier 1600 CPU seconds by Type @ 5000} pisk resource needs . £ 100~ cpu resource needs -
= USER m Analysis = I £ L
NANOAOD 1400 | W HL-LHC MC <] [ your S L )
2500 MINIAOD LHC MC 5 40002018 estimates: 2 802018 estimates: vy
AOD 1200 | ==m Non-Prompt Data 7] [ v Baseline model g - v MC fast calo sim + standard reco
2000 ™™ GENSIM Prompt Data >  » Reduced storage model g | * MC fast calo sim + fast reco ¥V
— RAW 1000 o r + Generators speed up x2 v
= Ops space I ® 3000[— Fyat budget model g 60_ P P . .
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Fig. 8. CMS Experiment projections for Computing resource needs in HL-LHC (from [99]).
Fig. 7. ATLAS Experiment projections for Computing resource needs in HL-LHC (from [98]).
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Task oriented use of ML in HEP

m Where can ML help this situation (and HEP in general!)?

— Perform a series of tasks with fewer resources
m For example have a faster reconstruction, thus requiring fewer PCs
m Oruse fewer FPGA gates for a given task

- Perform a task in a better way
m Have a better S/N in a given channel
m Have a better resolution in energy from a calorimeter

— Perform a single task within a given time frame

m Be able to run @ trigger level something which otherwise would not fit a time
budget

29



Why should an ML approach be better
at these?

m Be faster:

- Assume you have N inputs (deposits in a calorimeter?); standard algorithms for clusterization are
superlinear in the number of relevant deposits

m  Work on pair, triplets, ... of signals
- Asimple CNN is fixed in time (a fixed number of matrix multiplications)
m Very good in a trigger system: guaranteed answerat a fixed latency
—  Other types of network have recursion inside, and are not necessarily faster
- Note that we are referring to speed in using the network (inference)
m The training speed is much slower, but generally ~ irrelevant (once per Y/M, ...)
m Be better at performance

- We have hints it can work (for example, btagging in next slides). On the why:

m  Should be linked to the fact that a Deep Network has millions of free parameters, and can grab correlations

at the level an (human made) algorithm cannot reach. | guess you all see the risk here. | am not sure there
is a definite answer on WHY it works

30



And if ML: can we use industry standard

algorithms directly?

If you take Keras, you have access to literally months / weeks old
algorithms

- If they work for you, you are in the best position: some else
does the job from arxiv paper to a code you can run

- Ifthey do not, you are in a worse trouble

Some positive examples:

-  Whatever can be treated as a (pixelated) image, is in
marvellous shape

- Everything which is a time series, is in marvellous shape

Some negative examples:

—  Everything which has a variable # of inputs, is not typical in
industry

- Everything which is connection between objects, is starting
to be available only now

Outer Radius

Inner Radius.

Limit between
3001 and 200
sensors

Limit between
/2001 and 120

77N_sensors

- If your geometry is not rectangles in (x,y), you are on your/
own

CMS HGCAL
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Let's see example by ML category

m Simple characterization: - R A
arameter tracks
- Simply an evolution of likelihoods: take as many input variables you ' v MWLM
can, even poorly different between category A and B, and hope / L

assume the network will find correlations

m Classical example: identification of jets originating from b quarks @ LHC

track

- 2000-2010: use simple and understood single track features
m Displaced vertex, IP significance, presence of a displaced lepton, ...

- 2010-2015: use more features (like all the closeby track 2
parameters) and build a likelihood ratio-based discriminator interaction prifiliry vertex

jet axis

- 2015+: add more features, and use a ML system
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Light Flavour Efficiency

1073

10

10

Charged (16 features) x25

1x1 conv. 64/32/32/8

RNN 150

Neutral (8 features) x25

1x1 conv. 32/16/4

RNN 50

Secondary Vix (12 features) x4

1x1 conv. 64/32/32/8

RNN 50

Global variables (15 features)

CMS Preliminary 2010
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Dense
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Inputs = 663
7 hidden layers
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Image reconstruction or alike

Applies well to 2d-3d-4d detectors with finite sizes
(Pixels, Strips, Calorimetry Cells)

Pattern recognition in images is a major industry
task: lots of code, experience, theory, ...

- Machine autodriving, defects in products of
assembly lines

First ingredient is usually convolutional neural
network: idea is to deduce complexity by allowing
for translational invariance

- Count/locate the windows: a window is a
ylocal feature” independent of absolute
position in the image

CNNs allow to identify local features, with more
complex analyses (window size, material, ...)
following using the reduced complexity

What follows depends on what you want to do
- Ildentify?
- Count?
- Measure?

R CA3PORTS CARIEN

‘‘‘‘‘‘‘‘
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Average of large number of Jet Images

jet image

\\“!ﬁ 4!%,/ ::: E: " 3

Where in HEP? ; :
proton-proton - EE,

collision into/ 100

out-of page 10%

.ooA

jet /l 250 <p_/GeV <260 GeV, 65 < mass/GeV <95
m We have many detectors whose s — os
E 10 o
response can be naturally ot saale b i
described as 2-3-4d images jet image R :

B. Nachman:
https://indico.cern.ch/event/567550/contributions/2656471/

[Translated] Pseudorapidity (n)

g T
- ’: CUS i P AWr
- B S somisen P
o . Individual particles 2 ,;‘C“
B p mostly resolved > X
Layer4 4 S
= - < :
B . From images to a
- 1

" ‘ “movie” (4

! F i
photograms in

' this case)

Layer3: - ’

Layer2 . Hit merging

; = 1]
Layerl w//'
I
I

e
proton beam
B)
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ECAL input ' HCAL input

(25,2525 ) | (g (5,5, 60)
= _'f’ Conv3D
Concrete example: jet energy o=, 9 (@ =
. MaxPooling3D | L ~a  MaxPooling3D
reconstruction wiia g (P e
Flatten H
0 . . . (3993,) I Flatten
m Standard algorithm: estimate response in a H-CAL -~ (1080)
and in a E-CAL, and do some sort of weighted sum
Merge
m DL algorithm: input the 3-4d (time slices) readout (5073,
in the vicinity of the jet axis, identify locally clusters Dense
via CNNs, get global single-CAL response, combine (1000)
Dense
m Inputs are (25*%25*25+5*5*60 = 17k); one (rel) . (1)
output («jet energy») Energy resolution
_ Predicted energy X True energy o Linear ft Hactrons
m Free parameters («weights») are ~ 1M otons - dectrons 7 M
m All these network components are working @ a - .. ] ‘ e
fixed timing z ™ M Y
% r\IYeutYraITplons jzi CF\arged p\orns o % Lﬁ% - ﬂ

0 100 200 300 400 500
True energy (GeV) True Energy (GeV)



https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf

Concrete example: track seeding in
pixel layers

g
g
?
Input: %
;
e ~
1. Conv: 50 filters, 7 x 7
2. Conv: 20 filters 5 x 5
3. Conv: 20 filters, 5 x 5
4. Conv: 18 filters, 5 x 5
5. Conv: 15 filters, 3 x 3
A J
4 / N\ 4 \
6. Conv: 15 filters 3 x 3 6. Conv: 12 g
7. Conv: 15 filters 3 x 3 7. Conv: 91 &
8. Conv: 15 filters, 3 x 3 8. Conv: 7 f {
9. Conv: 15 filters, 3 x 3 9. Conv: 3t &
- J - <

Y

Target:
track parameters
map

\

Pixel Map, cluster 2, layer 1

Pixel Map, cluster 2, layer 2

Pixel Map, cluster 2, layer 3

Pixel Map, cluster 2, layer 4

Targe..

points maps

track-crossing

Performance similar to standard
JetCore, 6x faster

(ref)
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Tracking Efficiency
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i t
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-0.01 | SRS ! -
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0.03 I ':edlctién-targ;zt
0.04F s ——
0 05 = - 3 - - - . . PR, .
10 10 A Rltrack, ;e\?
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https://indico.cern.ch/event/742793/contributions/3274301/attachments/1822584/2981871/bertacchi_deepcore_ConnectingTheDots.pdf

Series and alike

| Use DL tools designed for language processing

] When you say «ok google, is it going to rain today in Florence?», the system gets:
- ds /it / going /to» ... (not much info on what is requested .. discard)
- «rain» ... ah so it is something «weather like» (first categorization)
- «today» ... in the category weather, | will need to see «today’s» forecasts as a

Subcategory
- «in Florence» ... ok now | know where C’i) C?D C}‘D C’T‘D
- «(pause)» ... question is over = | can answer GA_}—] - [A-[A]-{A] A ]

] Networks able to handle an undefined number of inputs are usually mapped as Recurrent
Neural Networks: you generate «memory» of the previous step by connecting the output to the
input

] The most used are Long Short-Term Memory

- You use a word at a time as input, but he network has «memory» between calls (not a
simple perceptron)

- The memory fades with time. Low correlation of what you said 20 words ago with the
current

- There is a stop signal which means «inputs are over»

Tt

m  Where we can use them?
- In all the cases where the number of inputs is undefined a priori > Forget Gate

- Typically orders matter, which is not always true for us 2> 38




Cluster/identify tracks/deposits in a Jet

m We already saw it can be done as images

- But while CAL are «pixelated» by construction, track parameters are not: using
the same approach on them »worsens the resolution»

m Keep pushing tracks (parameters) to the network until done

m Each new track refines the knowledge

- Timing is now not fixed, but scales with the # of inputs 800 Sjot pr<2500 GeV

I I =
— LSTM + Dense [128,64] No trim (jet structure sorting) =

) _ \ - -~ DNN
. .. . y
/ o o \ Discrimination Z’ = tt vs QCD 10t | ]
// bb\.\ E !
/e ) LSTM ;
° Jet sequence S | -
: . ‘l 00— 00— 0—>0—>0—0 .21'37103_ / ]
| ! =
\ ® / {Pr, P2, P3, Pa, Ps, Ps, P7, Ps} o f =
) o -
Input conditions Background rejection at signal efficiency of 5:3_) N
N\ Architecture — - - o 10 =
Pileup Trim Sorting 80% 50% 20% 5
@
DNN LHC 2016 Yes Subjet 9.8 45 365 e
Yes Subjet 13.4 78 780 o' L Dense NN
LHC 2016 No Substructure 17.0 101 930 E
No Subjet 16.7 97 855
LSTM
Yes Subjet 13.5 78 780 [
50 No  Substructure 16.1 93 790 10° L !

Top Tagging Efficiency



https://arxiv.org/pdf/1711.09059.pdf

Monte Carlo Simulation

Today Geant 4 based simulation uses ~ 30-50% of the total CPU utilization in
LHC experiments

- Translate into some x10 MEur/y

What is Geant4?
- lterative approach, where N particles traverse M volumes and interact
- Timing ~ NxM, and in LHC Phase 2

[ | N scales with PU is you are not too smart) and with the precision one
wants to have n the measurement (> 6x)

[ | Volumes can scale trastically with upgraded detectors (CMS Phasel G4
geometry: 2M volumes; CMS Phase2 G4 Geometry: 20 M volumes)

Today ATLAS needs 6 min/event ...

Approach is ab-initio:

1. Inject initial particles

2 follow particles in the detector geometry
3. deposit energy, generate secondaries
4

final detector response is the sum of these + some simulation of
electronic response ...

- Only #4 is compared with data, and in the end only that is the relevant
quantity

Inject
particle(s)

ML approach:

directly to the

only relevant
result

Navigate in
geometry

|
Xsecs for

physics
processes

Sum Sensitive
Detector
energy losses

40



How Is that different from a standard
Fast Simulation?

m «standard Fast Simulationn»:

Run Geant4 (tuned on test beam data) or
use real data when available

Define the N relevant distributions
(resolutions, energy scales, residuals, ...)

Parametrize them (gaussians or
whatever) and define resolution functions
to be applied to smear input data

m Limits:

N cannot be large

Difficult to have correlations (non
diagonal terms in the resolution matrix for
example) under control A lot of work by
hand

m ML approaches

Can be many (like simple NN to
reproduce the final signal
distribution expected from Geant)

... but it is today recognised as
the most clear field of application
for Generative Adversarial
Network (GANs) >
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GANS

m  Generate an algorithm (a network) putting minimal knowledge into the system, and
not be attached to specific input dataset = need the system to understand the «rule»
(the «physics»!)

m Inspired / applied to Game theory: AlphaGO Zero used that

- AlphaGO: version which defeated the World Champion in 2016, trained on 30
million GO moves from an historical database. A «standard large» FF NN

- AlphaGO Zero: end 2017, no use of moves database
] Start from «noise» (random moves) and 2 AlphaGO isntances playing together

] Evaluate the goodness of each instance from the rate of final outcomes (no
move by move analysis, which restricts to what a human understands of GO)

m So, instead of a Al trying to reproduce what human believes is the correct answer, an
Al fighting with another Al

m How does it help for us? 2>
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https://lh3.googleusercontent.com/atTt6Okt1LQIjIAF225ptfDdCtndp-OD4ZNPAmxTEAESk-sRvQg0cHbULyxh4wci7QH_TD3jIMGWMraOZHPW-C9UU6ZUx9jN4yms3g=w1440-rw-v1

Generative Adversarial
Network

Real
Samples

GANSs for detector simulation

Space

4 _"‘ IsD .
‘. Correct? ./
e . S~
v

LD G ‘
m let's say you want to have the response from an H N Generated
incoming particle(s) in a calorimeter cell " samples

. - -

m You have examples from Geant4 and from test e A
beam data; you want to have a NN response Paganini, de Oliveira, Nachman
which looks indistinguishable from these .

. arxt1v:1712.10321
m Put 2 networks one against each other
- One start from no knowledge, and basically <

fires a random response

- The second looks at it and at the examples,
and tried to understand which is the <Al
generated one» (after having been trained

()
1032
>
(@)]
1020

4

on the examples) c
L
[ Initially it is very easy - 101
[ But the choice is used by the first Al as a =
feedback («this was not what was expected» g
to retune itself) 100

m  Atthe end of the process, the second net
will rgach 50% success rate = the firstis
tune
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No miracle happening: «what you
(ref) train the discriminator for is very
good, the rest varies 44



https://indico.cern.ch/event/773049/contributions/3474741/attachments/1937484/3216167/GAN_FastsimLHCb_CHEP_191104_v2.pdf
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https://cds.cern.ch/record/2678418/files/1905.11825.pdf
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https://arxiv.org/pdf/1805.00850.pdf

Why do so at all?

m Inthe end the net result is

something which reproduces well
Geant4

- Use directly that!

m The resulting ,generator” network
(after the adversarial phase) is still a
network of the type we defined; in
particular if no recursion is used,
operates in finite time

m Factor >1000x in speed found

v.a. _hz_g4

E Entries 1576880
0.08— i o Mean 13.8
F -+ ! [StdDev _4.654 |

0.07|—
0.06 X
- (=
: g 0.05F
i F i
0.04f— -
. g 0.03 X
7 0.02— . =
b4 -

0.01 o Shower longitudinal section

ok AP BTN B BN B
0 5 10 15 20 25

z

Figure 2. (left) The three-dimensional representation of an energy shower created by a 100
GeV electron as generated by the GAN, using particle type as conditioning information. (right)
Longitudinal shower shapes for 100 GeV electrons: GAN result is compared to full Geants
simulation. The Z coordinate indicates the bin index in the longitudinal direction.

From the computing performance perspective, we run a very simple test comparing the time
needed to generate a single shower using Geant4 and the trained 3d GAN network: Geant full
simulation on an Intel Xeon E5-2683 processor takes approximately one minute, 3d GAN on the
NVIDIA GeForce GTX 1080 just 0.04 milliseconds.

a7


https://iopscience.iop.org/article/10.1088/1742-6596/1085/3/032016/pdf

Autoencoders

Autoencoders are networks which try and lower the dimensional representation
(its latent space) of given inputs - with no direct guidance

In other words, try and discover a representation of the input (with dimensionality
M) as N numbers

Compression algorithms (lossy) can be constructed in this way, by trying to force an
output as close as possible to the input (makes sense for N not too small wrt M)

If N is small, the chance to get back the original event is excluded, but you can still
use the approach to have the network «earn» typical features of the events

Why is this interesting? In some cases, you know what is B, not sure what is S
going to be

In physics: blind searches for «anything which does not seem a SM backgroud» (model
independent)

- Anomaly searches!

Select some high level features of events (number and type of jets, leptons, ....)

Take
- Either SM MC
- Or even Data (assumes what you search for is rare enough)

Train a network which tries to reduce dimensionality, and back
Example with M=21 inputs, and N=8 internal (,latent”) dimensionality

M values

N values

2

H, @) o, (@)

~

Dy [N(W,. 6,) lIN(W,, 0,)]

1w

Encoder ht (50)

Encoder h2 (50)

— —

Decoder h1(50)

Decoder h2 (50)

—

21 e |

wm || oo |

Loss = 3:D,, - In(P)

P(Xla, a, a,)
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https://arxiv.org/pdf/1811.10276.pdf
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o ooo
| e kL
//j7
—JUMINYII =
25333
| QP NN
;i/

1 m Use GAN to decrease dimensionality to

“non fitting” events

. ’ ; - — Cut depends defined as how many
W e " ’ 5 false positives you are willing to

wnen : accept (if you want, manpower
o /‘& o‘K j related: someone will need to
fos 0 0 = & scrutinize them)

NeuPFIso :

0.03 !
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0 55 o 05 _‘:‘5_ , 1 h%stt deflneS the
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! 1 A-44 h h
— ——— . systems, whic
05[] e > 104 — o | can a posteriori
— 0.2 j 0.2 =
:l—l e}
%% V4 L 4 05 0 1 8 be teSted on
agged jets number Electrons number Lep Charge [e] ° 1 0_5
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Figure 1. Distribution of the HLF quantities for the four considered SM processes. 10-! 100 101 @ 10
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How to use it?

m Tuning the ,false SM positives” @
1000/month you get an efficiency on those
NP models & a number of predicted events

per month

—  Or, looking the other way round, the
xsec needed to get 100 events/month
from that process

m Interesting point: if you train from data (the

ultimate goal), clearly your performance get
worse if the NP signal is present &

abundant

- Incresing ,pollution“ of A2 4] 100x
reduces performance by 10x, but you
still gain overall

BSM benchmark processes

Process | VAE selection Cross-section Cross-section
efficiency 100 events/month [pb] | S/B = 1/3 [pb]
A 2.8.1073 7.1 27
LQ — br 6.7-1074 30 110
h — 77 3.6-1074 55 210
h* = v 1.2.-1073 17 65
10°
107!
1072

--- A-4/ (Avg. train SM)
A-4[ (Train SM + A-4/)

BSM efficiency
[
=

107 ~ (0gsmu=7.1pb)
A-41 (Train SM + A-4{)
(ogsm =71 pb)
1073 ~ A-41 (Train SM + A-4{)
' — (osm =710 pb)
_ 1000 SM evts/month
-6
1010-6 1073 1074 1073 1072 107! 10°

SM efficiency
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G ra p h N etS Segment classification

S © O O
m Up to now we have seen networks able to I .
-  Categorize an “event” given a list of features with possible some
“truth” samples B ® .0
- Via Regression, compute a quantity / series of quantities \ / ) S .
m Some tasks in HEP are not seen in these categories ."" O .
- Tracking in Silicon Devices: you have the silicon hits, you need to o
associate those coming from the same particle . e
- Clustering in Calorimeters/Silicon Devices: given a set of single '. '°. .
channel responses, you need to decide which come from the
same particle
- Particle Flow in HEP: given a set of objects (tracks, calorimeter _
clusters, leptons), match them The output of the net is not
- Vertex finding in tracking detectors: associate tracks originating the type / position / of the
from a common vertex : :
nodes (hits), but their
m You are not creating / destroying hits / measuring quantities, but interconnection graph, with

finding links / relations between existing objects

- Measuring is “later”: once you have decided a set of hits belongs a strength
to the same particle = Standard Kalman Fitter * strength can be seen as

proportional to the
degree of certainty
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https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf

ML @ Trigger level

m [riggers are a very special environment in HEP
- Again LHC/CMS example L1 trigger: O(10usec) available for a decision
— It includes the time to build the event and to transfer it
- Most L1 decisions use local (only a detector slice) or coarse information

m No place for a Linux PC... Can ML still be useful?

m [ypical setup and resource availability for a L1 hardware is FPGAs
— They run in deterministic time
— They are fast enough, with a native latency ~ 100 ns
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Keras
TensorFlow

PyTorch

v. Co-processing kernel

idea his 4 ml

compressed
model HS |,
m Run/test/ train a network with standard means conversion Custo:\ firmware
- Keras + tensorflow un Linux PC (with GPU) using ~ Usvel machine learing /i i
. sortware workriow

real / emulated input data \me configurafion /
- Once you get the performance you are reuse/pipeline

requesting, “dump the network” (geometry +

We[ghts) 10 sami

—— g tagger, AUC = 93.8%
—— qtagger, AUC = 90.4%

m Atleast 2 HEP made tools allow to dump the network
on a FPGA and run inference there
-  CERN'’s his4ml
m R&D for L1 triggering @ CMS (jet classification)
- UniPG’s BondMachine

m Uses the concept to deploy a processor in FPGA
per perceptron: completely parallel!

— w tagger, AUC = 94.6%
—— ztagger, AUC = 93.9%
—— t tagger, AUC = 95.8%

1073

0.0 0.2 0.4 0.6 0.8 1.0
= Signal Efficiency
The BondMachine toolkit: Enabling Machine E“’j & -E - 5 o (ref)
Learning on FPGA -BaEl - 5 =) 55 ret
5! 5! (5! 5
god-B-8B-8<-8<-8<8<E

Mirko Mariotti* %, Loriano Storchi *, Daniele Spiga *, Davide Salomoni¢, Tommaso
Boccali/, Daniele Bonacorsi® o) &)
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https://github.com/hls-fpga-machine-learning/hls4ml
http://bondmachine.fisica.unipg.it/
https://arxiv.org/pdf/1804.06913.pdf
http://inspirehep.net/record/1766692/files/PoS(ISGC2019)020.pdf

S0, summary of possible utilizations of
ML in HEP

m Simulation:
- GANs tuned on Geant4 / data to replace the bulk of the simulation

m Reconstruction
— Piece by piece substitution on single algorithms with ML counterparts

- Typical networks would be CNNs, GraphNets, ...

m Analysis
— Classification of events in categories, S/N, anomaly detections

m Isthere more? At least 2 things | want to cite
- ML for “detector operations”
- Attempts to “replace us”
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Detector operations

0 10 20 30 40 50
Channel

Raw Occupancy (Run: 275310, W: 1.0, St: 2.0, Sec: 7.0) -

m HEP needs lots + increasing manpower to insure
- Data quality and detector health

- Optimal data distribution and access for
analysis

- The continuous operation of the various
services (broken hardware, generic
failures)

10 20 30 40 50
Channel

1.0 -

o
©

o
©

m 2 options to showcase:

1. Treatthe images as ... images and train a
CNN to discriminate good/bad statuses

Sensitivity
o
~

Isolation Forset, AUC: 0.965

Support Vector Machine, AUC: 0.974 _
Edge Detection, AUC: 0.976

Variance, AUC: 0.985

o
o

o
U

m Problem: you have to have a clear idea of ’ oo N, AU 0998
WHAT and HOW can go wrong 0| ‘ | ‘
0.0 0.1 0.2 0.3 0.4 0.5
1 - Specificity
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https://arxiv.org/pdf/1808.00911.pdf

Anomaly detection for operations

Input Fully connected Fully connected Output

2. Train on good data periods, and use an autoencoder
similar to the one used to discover NP

- Choose some relevant quantity to monitor (# of
hits, # of jets ...) = 401 variables

- For each variable, describe the distributio
quantiles, mean, rms) =2 401x7 = 2807 input
per each small period of data taking (assumed
uniform)

- Autoencode with a latent space of dimension
500

- Assumption is that bad data periods will stick out
as bad (large difference input/output)

2000 hidden units

True Positive Ratt

(ref, ref)

—— Undercomplete Autoencoder, AUC = 0.895 + 0.004
- Contractive Autoencoder, AUC = 0.895 + 0.003
—— Variational Autoencoder, AUC = 0.901 *+ 0.003
- Sparse Autoencoder, AUC = 0.905 *+ 0.003

LI I (L I L L L B |
llllllllIIllllIlIIIIllllI

1 1 1 1

1 I L 1 l L 1 l 1 1 I L 1 l
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Performance of different AEs


https://indico.cern.ch/event/708041/contributions/3276189/attachments/1811339/2958493/ACAT_Data_Certification_with_Deep_Learning.pdf
https://indico.cern.ch/event/766450/contributions/3225159/attachments/1763842/2862748/ML_for_DQM_and_DC_in_CMS_11.pdf

In a not too distant future?

m Today ML is a piecewise replacement to
some algorithmic steps in our workflow
from raw data to the final analysis plot

- Steps remain basically the same
m Isitthe only option?

m Why not try an all-inn approach?

- A network (system?) which inputs
RAW data and outputs a “physics
relevant quantity”

- Itis feasible?

nepack / transform

Local detector
reconstruction

(More)global detector
reconstruction

(Even more)global
detector reconstruction

Interpretation / analysi~




m [rain a very large ML system to start from RAW detector
data, and give a final event characterization
(Higgs/QCD/Upsilon/JPSI/...)7?

Y A )| | < 7 P

m Still we can try with a simplified model:
— clean events (no pile up)
— only tracking detectors (CMS Pixels)
- Reduce granularity of input
m Idea: take pictures of the hits in the CMS pixel tracker,

from different views (xy, xz, zy), as lowish resolution
Jpegs (to reduce the # of inputs)

- 300x300 images = 90k (very sparse) inputs

Higgs event Jpsi event



https://indico4.twgrid.org/indico/event/4/session/15/contribution/62/material/slides/0.pdf

Event categories and results

_ Medium event
m Use 4 event categories " complexity 1o/

Receiver Operating Characteristic

- Higgs decays_ to tau I_eptons High event f
— QCD (strong interactions) complexity 081
- Jpsi decays (to 2 muons) Low event :
- Upsilon decays (to 2 muons complexity g
g 0.4 4 ///
m And train with ~10k simulated events per category -
— ReIVaIH’iggsZOOChargedTaus_IB ROC curve (area = 0.98)
LOW event 0.21 —— RelValjpsiMuMu_Pt-8 ROC curve (area = 0.93)
—_— RelVaIQCP_Pt_SOO_BOO_lB ROC curve (area = 0.99)
. It Worksl Are We done’) NO___ Complexrty oo L |— ReIIVaIUpsnonlSToMuMu_B RC‘)C curve (areal=0.86)
0.0 0.2 0.4 - 0.6 0.8 1.0
- Model very simplified 8 s
6 .
- Never tried on complex events @™ (each category against all
(add 35 pp interactions and see..) (00 9\0\ o ,\ others)
- Eventually, who would trust the res%( -~ Note that Upsilon vs Jpsi
- Who sets the training samples? {l__l signatures are quite similar
but still perfomance

m l|deally, it should work in an anomaly

search mode acceptable
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ML_INFN

m Approved CSN5 Experiment starting on Jan 1st 2020

m Large participation, also from Florence

m Plan is to start organizing the workplan as soon as back from the break with a planning meeting

e |l progetto ML_INFN cerca di dare una risposta
efficace a questi punti, e si basa su una
ottimizzazione delle risorse e delle conoscenze

presenti nell’'ente, riguardo a:

1. Tecnologie informatiche in grado di garantire un accesso
performante a utenti e dati remoti, indipendentemente dalla
collocazione geografica degli stessi

2. Accesso a opportunita di training a tutti i livelli, inclusi hand- mmmm) WP2: Formazione
on intensivi con realizzazione di sistemi completi e (Stewardship)
funzionanti

3. Sistematizzazione delle conoscenze sparse fra le varie CSN in
una knowledge basis (KB) categorizzata per tecnologia, in
modo da poter iniziare studi ML guidati utilizzando codice
esistente e potendone contattare gli autori

) WP1: Infrastruttura

) WP3: Casi Scientifici

Sede Resp. Locale
BA Diacono
CNAF Dal Pra

Fl Anderlini
GE Chincarini
PD Veriato
PG Spiga

Pl Boccali
RM1 Giagu

TO Lusso

BO Bonacorsi
NA Conventi
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Conclusions

m ML is emerging as a possible solution for some of the pressing problems in HEP
- Reducing the computing resource needs
- @Going beyond the performance of standard human written algorithms

m The good news is that we can count on a very strong sw/hw ecosystem from industry
- Quite un-typical for HEP, we usually love to start from scratch

m T[he bad news is that finding your path is difficult
- Which networks to use? Which hardware? How to interpret the results?
- Definitely needs some guidance ... efforts are starting = ML_INFN
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