Combined extraction of pion and proton TMDs

Patrick Barry (JLab) – GFI 1st miniworkshop - Improving TMD factorization for the next generation of hadron physics experiments

June 29th, 2023

In collaboration with: Leonard Gamberg, Wally Melnitchouk, Eric Moffat, Daniel Pitonyak, Alexei Prokudin, Nobuo Sato

Based on: <u>arXiv:2302.01192</u>

What do we know about structures?

 Most well-known structure is through longitudinal structure of hadrons, particularly protons

C. Cocuzza, et al., Phys. Rev. Q. 104, 074031 (2021)

Other structures?

- To give deeper insights into color confined systems, we shouldn't limit ourselves to proton structures
- Pions are also important because of their Goldstone-boson nature while also being made up of quarks and gluons

Available datasets for pion structures

- Much less available data than in the proton case
- Still valuable to study

Pion PDFs from lattice + experimental data

 The inclusion of lattice QCD data along with experimental data can also help us to reveal pion structure

Large transverse momentum

• p_T dependent DY in **collinear factorization**

Effects of Each Dataset

 Not much impact from the transversemomentum dependent DY data

3D structures of hadrons

• Even more challenging is the 3d structure through GPDs and TMDs

Unpolarized TMD PDF

$$\tilde{f}_{q/\mathcal{N}}(x,b_T) = \int \frac{\mathrm{d}b^-}{4\pi} e^{-ixP^+b^-} \mathrm{Tr} \left[\langle \mathcal{N} | \bar{\psi}_q(b) \gamma^+ \mathcal{W}(b,0) \psi_q(0) | \mathcal{N} \rangle \right]$$
$$b \equiv (b^-, 0^+, \boldsymbol{b}_T)$$

- b_T is the Fourier conjugate to the intrinsic transverse momentum of quarks in the hadron, k_T
- We can learn about the coordinate space correlations of quark fields in hadrons
- Modification needed for UV and rapidity divergences; acquire regulators: $\tilde{f}_{q/N}(x, b_T) \rightarrow \tilde{f}_{q/N}(x, b_T; \mu, \zeta)$

Factorization for low- q_T Drell-Yan

- Like collinear observable, a hard part with two functions that describe structure of beam and target
- So called "W"-term, valid only at low- q_T

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}\tau\mathrm{d}Y\mathrm{d}q_T^2} = \frac{4\pi^2\alpha^2}{9\tau S^2} \sum_q H_{q\bar{q}}(Q^2,\mu) \int \mathrm{d}^2b_T \, e^{ib_T \cdot q_T} \times \tilde{f}_{q/\pi}(x_\pi,b_T,\mu,Q^2) \, \tilde{f}_{\bar{q}/A}(x_A,b_T,\mu,Q^2) \,,$$

TMD PDF within the b_* prescription

$$\mathbf{b}_*(\mathbf{b}_T) \equiv rac{\mathbf{b}_T}{\sqrt{1+b_T^2/b_{ ext{max}}^2}}.$$

Low- b_T : perturbative high- b_T : non-perturbative

Collins, Soper, Sterman, NPB 250, 199 (1985).

TMD factorization in Drell-Yan

• In small- $q_{\rm T}$ region, use the Collins-Soper-Sterman (CSS) formalism and b_* prescription

. .

. 1

. .

Nuclear TMD PDFs

- The TMD factorization allows for the description of a quark inside a nucleus to be $\tilde{f}_{q/A}$
- However, the intrinsic non-perturbative structure will in-principle change from nucleus-to-nucleus
- Want to model these in terms of protons and neutrons as we don't have enough observables to separately parametrize different nuclei

Nuclear TMD PDFs – working hypothesis

• We must model the nuclear TMD PDF from proton

$$\tilde{f}_{q/A}(x,b_T,\mu,\zeta) = \frac{Z}{A}\tilde{f}_{q/p/A}(x,b_T,\mu,\zeta) + \frac{A-Z}{A}\tilde{f}_{q/n/A}(x,b_T,\mu,\zeta)$$

- Each object on the right side independently obeys the CSS equation
 - Assumption that the bound proton and bound neutron follow TMD factorization
- Make use of approximate isospin symmetry in that $u/p/A \leftrightarrow d/n/A$, etc.

Building of the nuclear TMD PDF

• Then taking into account the intrinsic non-perturbative, we model the flavor-dependent pieces of the TMD PDF as

$$(C \otimes f)_{u/A}(x)e^{-g_{u/A}(x,b_T)} \rightarrow \frac{Z}{A}(C \otimes f)_{u/p/A}(x)e^{-g_{u/p/A}(x,b_T)} + \frac{A-Z}{A}(C \otimes f)_{d/p/A}(x)e^{-g_{d/p/A}(x,b_T)}$$

and

$$(C \otimes f)_{d/A}(x)e^{-g_{d/A}(x,b_T)} \to \frac{Z}{A}(C \otimes f)_{d/p/A}(x)e^{-g_{d/p/A}(x,b_T)} + \frac{A-Z}{A}(C \otimes f)_{u/p/A}(x)e^{-g_{u/p/A}(x,b_T)}.$$

Nuclear TMD parametrization

• Specifically, we include a parametrization similar to Alrashed, et al., Phys. Rev. Lett **129**, 242001 (2022).

$$g_{q/\mathcal{N}/A} = g_{q/\mathcal{N}} \left(1 - a_{\mathcal{N}} \left(A^{1/3} - 1 \right) \right)$$

• Where $a_{\mathcal{N}}$ is an additional parameter to be fit

Datasets in the q_T -dependent analysis

Expt.	√s (GeV)	Reaction	Observable	Q (GeV)	x_F or y	N _{pts.}
E288 [39]	19.4	$p + Pt \rightarrow \ell^+ \ell^- X$	$Ed^3\sigma/d^3\mathbf{q}$	4 – 9	<i>y</i> = 0.4	38
E288 [39]	23.8	$p + Pt \to \ell^+ \ell^- X$	$Ed^3\sigma/d^3\mathbf{q}$	4 - 12	y = 0.21	48
E288 [39]	24.7	$p + Pt \rightarrow \ell^+ \ell^- X$	$Ed^3\sigma/d^3\mathbf{q}$	4 - 14	y = 0.03	74
E605 [40]	38.8	$p + Cu \rightarrow \ell^+ \ell^- X$	$Ed^{3}\sigma/d^{3}q$	7 - 18	$x_F = 0.1$	49
E772 [41]	38.8	$p + D \rightarrow \ell^+ \ell^- X$	$Ed^3\sigma/d^3\mathbf{q}$	5 – 15	$0.1 \le x_F \le 0.3$	61
E866 [50]	38.8	$p + Fe \rightarrow \ell^+ \ell^- X$	R_{FeBe}	4 - 8	$0.13 \le x_F \le 0.93$	10
E866 [50]	38.8	$p+W \to \ell^+\ell^- X$	R_{WBe}	4 - 8	$0.13 \le x_F \le 0.93$	10
E537 [38]	15.3	$\pi^- + W \to \ell^+ \ell^- X$	$\mathrm{d}^2\sigma/\mathrm{d}x_F\mathrm{d}q_T$	4 – 9	$0 < x_F < 0.8$	48
E615 [4]	21.8	$\pi^- + W \to \ell^+ \ell^- X$	$\mathrm{d}^2\sigma/\mathrm{d}x_F\mathrm{d}q_T^2$	4.05 - 8.55	$0 < x_F < 0.8$	45

- Total of 383 number of points
- All fixed target, low-energy data
- We perform a cut of $q_T^{\rm max} < 0.25 \ Q$

Parametrizations of the TMDs

- First perform single fits of these data to explore various aspects
- Many types of parametrizations have been used in the past
- For the "intrinsic" non-perturbative TMD, we perform fits with each of the following

<u>Gaussian</u>

 $\exp(-g_{q/\mathcal{N}}(x,b_T)) = \exp\left(-g_q(x,A)\,b_T^2\right)\,,$

Exponential

$$\exp(-g_{q/N}(x,b_T)) = \exp\left(-g_q(x,A)\,b_T\right)\,,$$

<u>Gaussian-to-</u>	
Exponential	

$$\exp(-g_{q/N}(x,b_T)) = \exp\left(-g_q(x,A) \frac{b_T^2}{\sqrt{1+B_{NP}(x)b_T^2}}\right),$$

Parametrizations

- We can test whether or not the *x*-dependence is important for these functions (it is!)
- For these g_q functions, we have the following

$$\begin{split} g_q(x,A) &= |g^q + g_2^q x + g_3^q (1-x)^2 | (1+g_1(A^{1/3}-1)) \;, \\ B_{NP}(x) &= b_{NP} x^2 \;, \end{split}$$

- 4 free parameters for each scheme (5 for Gaussian-to-Exponential)
- We may also open up these for each flavor in the proton (*u*, *d*, and *sea*) and for the pion (*val*, *sea*)

Problem describing data

- The E288 400 GeV data are difficult to describe the same above and below the Υ resonance
- Theory overpredicts data when Q > 11 GeV

Problem describing data

- The E288 400 GeV data are difficult to describe the same above and below the Υ resonance
- Theory overpredicts data when Q > 11 GeV
- Could treat as separate datasets – separate normalizations:

MAP parametrization

• A recent work from the MAP collaboration (Phys. Rev. D **107**, 014014 (2023).) used a complicated form for the non-perturbative function

$$f_{1NP}(x, \boldsymbol{b}_{T}^{2}; \zeta, Q_{0}) = \frac{g_{1}(x) e^{-g_{1}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} + \lambda^{2} g_{1B}^{2}(x) \left[1 - g_{1B}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}\right] e^{-g_{1B}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} + \lambda^{2} g_{1C}(x) e^{-g_{1C}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}}{g_{1}(x) + \lambda^{2} g_{1B}^{2}(x) + \lambda^{2} g_{1C}(x)} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}}{g_{1}(x) + \lambda^{2} g_{1B}^{2}(x) + \lambda^{2} g_{1C}^{2}(x)} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}}{g_{1}(x) + \lambda^{2} g_{1B}^{2}(x) + \lambda^{2} g_{1C}^{2}(x)} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}$$

$$(38)$$

$$g_{\{1,1B,1C\}}(x) = N_{\{1,1B,1C\}} \frac{x^{\sigma_{\{1,2,3\}}}(1-x)^{\alpha_{\{1,2,3\}}^{2}}}{x^{\sigma_{\{1,2,3\}}}(1-\hat{x})^{\alpha_{\{1,2,3\}}^{2}}},$$

$$g_{K}(\boldsymbol{b}_{T}^{2}) = -g_{2}^{2} \frac{\boldsymbol{b}_{T}^{2}}{2}$$

$$(niversal CS kernel)$$

• 11 free parameters; 12 to include the nuclear TMD parameter

MAP parametrization in the pion

• As was shown in MAP's pion paper, Phys. Rev. D **107**, 014014 (2023), the pion does not require multiple weighted Gaussians

$$f_{1NP}^{\pi}(x, \boldsymbol{b}_{T}^{2}; \zeta) = e^{-g_{1\pi}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}}$$

- We find the same result in our analysis
 - Original fits using 11 free parameters showed that the added Gaussians had no support in the kinematic region of the data

Resulting χ^2 for each parametrization

- MAP gives best overall
- How significant?

Z-scores

- A measure of significance with respect to the normal distribution
- Null hypothesis is the expected χ^2 distribution
- Alternative hypothesis is the resulting χ^2 from the fit

$$Z = \Phi^{-1}(p) \equiv \sqrt{2} \operatorname{erf}^{-1}(2p-1)$$

Visualizing Z-scores

- First show the $\chi^2(/N)$ distributions null hypothesis
- N is the number of degrees of freedom

Visualizing Z-scores

- Now, introduce the alternative hypothesis, let's say $\chi^2/N = 1.5$ for both cases
- Compute area under the curve in green this is the p-value

Z-scores

• Example of significance of the χ^2 values with respect to the expected χ^2 distribution

Perform the Monte Carlo

- We use the MAP parametrization
- Now, we can include the pion collinear PDF and its collinear datasets
- Include an additional 225 collinear data points
- Simultaneously extract
 - 1. Pion TMD PDFs
 - 2. Pion collinear PDFs
 - 3. Proton TMD PDFs
 - 4. Nuclear dependence
 - 5. Non-perturbative CS kernel

Data and theory agreement

• Fit both pA and πA DY data and achieve good agreement to both

Process	Experiment	$\sqrt{s} \mathrm{GeV}$	χ^2/np	Z-score
q_T -integr. DY	E615 [37]	21.8	0.86	0.76
$\pi W \to \mu^+ \mu^- X$	NA10 [38]	19.1	0.54	2.27
	NA10 [38]	23.2	0.91	0.18
Leading neutron	H1 [73]	318.7	0.36	4.61
$ep \rightarrow e'nX$	ZEUS [74]	300.3	1.48	2.16
q_T -dep. pA DY	E288 [67]	19.4	0.93	0.25
$pA \rightarrow \mu^+\mu^-X$	E288 [67]	23.8	1.33	1.54
	E288 [67]	24.7	0.95	0.23
	E605 [68]	38.8	1.07	0.39
	E772 [69]	38.8	2.41	5.74
	E866 (Fe/Be) [70]	38.8	1.07	0.29
	E866 (W/Be) [70]	38.8	0.89	0.11
q_T -dep. $\pi A DY$	E615 [37]	21.8	1.61	2.58
$ \pi W \to \mu^+ \mu^- X $	E537 [71]	15.3	1.11	0.57
Total	•	-	1.15	2.55

Correlations

- Level at which the distributions are correlated with each other
- Different distributions are largely correlated only within themselves

Extracted pion PDFs

• The small- q_T data do not constrain much the PDFs

Conditional density

• We define a quantity in which describes the ratio of the 2dimensional density to the integrated, b_T -independent number density, dependent on " b_T given x"

$$ilde{f}_{q/\mathcal{N}}(b_T|x;Q,Q^2) \equiv rac{ ilde{f}_{q/\mathcal{N}}(x,b_T;Q,Q^2)}{\int \mathrm{d}^2 oldsymbol{b}_T ilde{f}_{q/\mathcal{N}}(x,b_T;Q,Q^2)} \, .$$

Resulting TMD PDFs of proton and pion

- Shown in the range where pion and proton are both constrained
- Broadening appearing as *x* increases
- Up quark in pion is narrower than up quark in proton

Average
$$b_T$$

• The conditional expectation value of b_T for a given x

$$\langle b_T | x \rangle_{q/\mathcal{N}} = \int \mathrm{d}^2 \boldsymbol{b}_T \, b_T \, \tilde{f}_{q/\mathcal{N}}(b_T | x; Q, Q^2)$$

• Shows a measure of the transverse correlation in coordinate space of the quark in a hadron for a given *x*

Resulting average b_T

- Pion's $\langle b_T | x \rangle$ is 5.3 - 7.5 σ smaller than proton in this range
- Decreases as x decreases

Possible explanation

• At large *x*, we are in a valence region, where only the valence quarks are populating the momentum dependence of the hadron

Possible explanation

• At small x, sea quarks and potential $q\bar{q}$ bound states allowing only for a smaller bound system

Transverse EMC effect

- Compare the average b_T given x for the up quark in the bound proton to that of the free proton
- Less than 1 by $\sim 5 10\%$ over the x range

How sensitive are results to collinear PDFs?

- Blue (background) is proton with CT14nlo collinear
- Green proton with MMHT
- Red (background) is pion with JAM collinear
- Orange pion with xFitter

How sensitive are results to collinear PDFs?

- Change the nuclear PDF
- Blue: usual EPPS16
- Red: nCTEQ
- Almost identical!

Importance of the nuclear parameter

- Let's compare the free proton with the proton bound in a nucleus, but setting $a_N = 0$
- No discernable difference between them
- Collinear PDF has little to no impact on $\langle b_T | x \rangle$
- The corresponding ratio is consistent with 1

Compare theory bands for $a_N = 0$

- Blue band fitted value from MC
- Orange band prediction from fit, but setting $a_N = 0$

Outlook/Summary

- Implement a theoretical uncertainty due to the nuclear corrections in a fit – can we capture the nuclear corrections there?
- Important to study various hadronic systems to provide a more complete picture of strongly interacting quark-gluon systems emerging from QCD
- Lattice QCD can in principle calculate any hadronic state look to kaons, rho mesons, etc.
- Future tagged experiments such as at EIC and JLab 22 GeV can provide measurements for neutrons, pions, and kaons

Future experiment – pion SIDIS

 $eN \rightarrow e'N'\pi X$

- Measure an outgoing pion in the TDIS experiment
- Gives us another observable sensitive to pion TMDs
 - Needed for tests of universality

Backup

Reduced loffe time pseudo-distribution (Rp-ITD)

• Lorentz-invariant loffe time pseudo-distribution:

$$\stackrel{\text{``loffe time''}}{\nu = p \cdot z}$$

$$z = (0,0,0,z_3)$$

Observable is the *reduced* Ioffe time pseudodistribution (Rp-ITD)

$$\mathfrak{M}(
u,z^2) = rac{\mathcal{M}(
u,z^2)}{\mathcal{M}(0,z^2)}$$

Ratio cancels UV divergences

Goodness of fit

- Scenario A: experimental data alone
- Scenario B: experimental + lattice, no systematics
- Scenario C: experimental + lattice, with systematics

			Scenario A		Scenario B		Scenario C	
			NLO	$+\mathrm{NLL}_\mathrm{DY}$	NLO	$+\mathrm{NLL}_\mathrm{DY}$	NLO	$+\mathrm{NLL}_\mathrm{DY}$
Process	Experiment	$N_{ m dat}$		$\overline{\chi}^2$		$\overline{\chi}^2$		$\overline{\chi}^2$
DY	E615	61	0.84	0.82	0.83	0.82	0.84	0.82
	$NA10 (194 { m GeV})$	36	0.53	0.53	0.52	0.54	0.52	0.55
	$NA10~(\rm 286~GeV)$	20	0.80	0.81	0.78	0.79	0.78	0.87
\mathbf{LN}	H1	58	0.36	0.35	0.39	0.39	0.37	0.37
	ZEUS	50	1.56	1.48	1.62	1.69	1.58	1.60
Rp-ITD	a127m413L	18	_	_	1.04	1.06	1.04	1.06
	a127m413	8	-	_	1.98	2.63	1.14	1.42
Total		251	0.82	0.80	0.89	0.92	0.85	0.87

Agreement with the data

- Results from the full fit and isolating the leading twist term
- Difference between bands is the systematic correction

Evolution equations for the TMD PDF

Small b_T operator product expansion

• At small b_T , the TMD PDF can be described in terms of its OPE:

$$\tilde{f}_{q/\mathcal{N}}(x,b_T;\mu,\zeta_F) = \sum_j \int_x^1 \frac{d\xi}{\xi} \tilde{\mathcal{C}}_{q/j}(x/\xi,b_T;\mu,\zeta_F) f_{q/\mathcal{N}}(\xi;\mu) + \mathcal{O}((\Lambda_{\rm QCD}b_T)^a)$$

- where \tilde{C} are the Wilson coefficients, and $f_{q/\mathcal{N}}$ is the collinear PDF
- Breaks down when b_T gets large

b_* prescription

• A common approach to regulating large b_T behavior

$$\mathbf{b}_{*}(\mathbf{b}_{T})\equiv rac{\mathbf{b}_{T}}{\sqrt{1+b_{T}^{2}/b_{\max}^{2}}}.$$

Must choose an appropriate value; a transition from perturbative to non-perturbative physics

- At small b_T , $b_*(b_T) = b_T$
- At large b_T , $b_*(b_T) = b_{\max}$

Introduction of non-perturbative functions

• Because $b_* \neq b_T$, have to non-perturbatively describe large b_T behavior

Completely general – independent of quark, hadron, PDF or FF

$$g_K(b_T; b_{\max}) = -\tilde{K}(b_T, \mu) + \tilde{K}(b_*, \mu)$$

Non-perturbative function dependent in principle on flavor, hadron, etc.

$$e^{-g_{q/\mathcal{N}(A)}(x,b_T)} = \frac{\tilde{f}_{q/\mathcal{N}(A)}(x,b_T;\mu,\zeta)}{\tilde{f}_{q/\mathcal{N}(A)}(x,b_*;\mu,\zeta)} e^{g_K(b_T;b_{\max})\log(\sqrt{\zeta}/Q_0)}$$

A few words on nuclear dependence

- The ratios from the E866 experiment provided a look to nuclear effects in TMDs as well as the importance of nuclear collinear effects
- Ignoring any nuclear corrections in TMDs and collinear PDFs

col	obs	tar	npts	chi2/npts	Z-score
E866	ratio	Fe/Be	10	2.2	2.16
E866	ratio	W/Be	10	3.51	3.67

Including nuclear dependence

 Better description when including the nuclear dependence in the collinear PDF and TMD

col	obs	tar	npts	chi2/npts	Z-score
E866	ratio	Fe/Be	10	1.11	0.4
E866	ratio	W/Be	10	0.92	0.04

Kinematics in x_1, x_2

 Using the kinematic mid-point from each of the bins, we show the range in x₁ and

 x_2

E772 data

- Let's take a look at the data and theory agreement
- Data do not always follow the general trend and uncertainties appear underestimated

The Collins-Soper (CS) kernel

 From the simultaneous πA and pA analysis, which uses the same CS kernel, we compare with the lattice-generated data

