CORSIKA 8

Astroparticle cascade simulation framework

Felix Riehn

for the Corsika 8 collaboration

CRIS-MAC 20. 06. 2024

CORSIKA

Cosmic Ray Simulation for KASCADE

KASCADE: an experiment to measure cosmic ray composition in Karlsruhe (Germany) first ideas: 1987, first data ~1997, KASCADE-Grande ~2003 end data taking 2009

(J. Knapp "first 30 years of corsika", ISAPP school 2018)

CORSIKA

Air shower simulation codes

Program	Reference	Method	Language	EM model	Hadronic model	
					Low E	High E
Aires	Sciutto (1999)	MC	Fortran	custom+LPM	HS	S, Q, E
CONEX	Bergmann et al. (2007)	MC+CE	Fortran	EGS4+LPM	U	S, Q, E
Cosmos	Kasahara and Cohen (2007)	MC	Fortran	Tsai+LPM	J, JQ, B, D	S, Q, E, D
Corsika	Heck et al. (1998)	MC+CE	Fortran	EGS4+LPM	G, F, U	S, Q, E, D
Corsika 8	Engel et al. (2019)	MC+CE	C++	Proposal	U	S, Q
MCEQ	Fedynitch et al. (2015)	CE	Python	EMCA (Tsai)	D	S, Q, E, D
MOCCA (*)	Hillas (1997)	MC	Pascal	custom	HS	HS
SENECA (\star)	Drescher and Farrar (2003a)	MC+CE	Fortran	EGS4	G	Q

* first version 1989!

- * 83 k lines of FORTRAN code!
- * developed for vertical EAS of hadronic primaries
- * extended over the years for generic air showers

CORSIKA flow diagram

Main task of corsika:

* tracking of particles through the atmosphere

* invoking the correct physics modules

~= HE version of GEANT, FLUKA ...

(J. Knapp)

"standard air shower: vertical proton"

* computing infrastructure
changed since 1990
(parallel computing,
dedicated accelerators
(GPUs,FPGAs,..))

```
#else
2125
2126
                   IF ( THETAP .GT. 70.D0*(PI/180.D0) ) GOTO 46
       #endif
2127
2128
                   IF ( XVC2 .NE. 0.D0 .OR. YVC2 .NE. 0.D0 ) THEN
      ¢
                     PHIP = ATAN2(YVC2, XVC2) + PHIPR(1)
2129
2130
                   ELSE
                     PHIP = PHIPR(1)
2131
2132
                   ENDIE
2133
                   IF ( PHIP .GT. PI2 ) PHIP = PHIP - PI2
2134
                   IF ( PHIP .LT. 0.D0 ) PHIP = PHIP + PI2
                                                                       * FORTRAN
2135
                  ENDIF
       #endif
2136
        #if IACT
2137
                                                                       * multiple extensions
                 CALL EXTPRM(PRMPAR(0), PRMPAR(1), THETAP, PHIP)
2138
                 CTT = COS(THETAP)
2139
                                                                       over the years,
2140
       #endif
        #if CURVED
2141
2142
        C COSINE OF APPARENT ZENIT ANGLE IS PUT IN PRMPAR(15)
                                                                       patched on
2143
        C (COSINE OF LOCAL ZENIT ANGLE IS IN PRMPAR(2))
                 PRMPAR(15) = COS(THETAP)
2144
                                                                        \rightarrow hard to maintain
2145
        #else
                 PRMPAR(2) = COS(THETAP)
2146
2147
       #endif
2148
               ELSE
        #if __CURVED__ && __UPWARD__
2149
                 IF ( FIMPCT ) THEN
2150
2151
        C SKIMMING INCIDENCE, COSTAP AT DETECOR IS 0
2152
                   THETAP = 0.5D0 * PI
2153
                          = 0.00
                   CTT
2154
        C CHOOSE IMPACT PARAMETER AT RANDOM
2155
                   CALL RMMARD( RD,1,1 )
```

Astroparticle physics is much more than hadron induced downgoing *air* showers

Astroparticle physics is much more than hadron induced downgoing *air* showers

Also need:

- * arbitrary media
- * arbitrary geometries
- * arbitrary primary particles
- ==> be ready for anything

CORSIKA 8 project

- * started in 2018
- * open development on gitlab
- * c++ (17)
- * very modular design
- * split code into framework and application

Aim for: "GEANT-4 for the outdoors"

CORSIKA 8 collaboration

CORSIKA 8 framework

* split air shower simulation code into separate pieces that work by themselves

EAS/Cascade application

CORSIKA 8 cascade application

Status of development

framework has sufficient functionality to simulate downgoing hadronic air showers:

- hadronic interactions
 - High energy (Epos, Sibyll, QGSjetII-04)
 - + Pythia 8 (ongoing)
 - Low energy (FLUKA, UrQMD)
- EM interactions (PROPOSAL + SOPHIA for photo-had)
- Radio emission (ZHS & CoREAS)
- Tracking/Propagation w magnetic fields
- Thinning algorithm
- 5 layer exponential atmosphere "a la corsika 7"
- neutrino interaction + tau decay
- Cherenkov emission via external code

same functionality (not necessarily the same algorithm) as CORSIKA 7 ==> detailed comparison

15

Same processes as CORSIKA 7 (EGS) but different implementation (PROPOSAL) and cross sections

Electron/Positron cross sections

Same processes as CORSIKA 7 (EGS) but different implementation (PROPOSAL) and cross sections

Photon cross sections

Longitudinal profile for positron

Longitudinal profile of positrons with E>1MeV in a 10 TeV photon shower. ~%-level agreement

Lateral profile of e+- with E>1MeV in a 10 TeV photon shower. \sim %-level agreement

Hadron showers

==> 10-20% difference! (or agreement as the optimist would say) Under investigation..

CORSIKA 8 – unique features

Cross media showers

J. Ammerman-Yebra, ICRC 2023

CORSIKA 8 – unique features Cross media showers

CORSIKA 8 – unique features Cross media showers

CORSIKA 8 – unique features

Cross media showers

Radio emission in ice

CORSIKA 8 – beta release

* first release planned for September/October

* aim for beta-release:

- get feedback on

- * user interface / steering
- * output format

- new applications from community on going collab.:

* TAMBO (mountain/valley showers)

* TRIDENT (neutrino ind. showers in water)

==> find missing functionality

CORSIKA 8 – how to participate

Stay informed: **corsika-devel email list** (https://www.lists.kit.edu/sympa/subscribe/corsika-devel)

Contribute: **gitlab** (https://gitlab.iap.kit.edu/AirShowerPhysics/corsika)

Ask questions: Mattermost (https://mattermost.hzdr.de/corsika8)

Register: * workshop (end of September 2024)

Genealogy

Extend stack with bookkeeping

Different planets

CORSIKA 8 – unique features Ice showers

In-ice Showers and Verification of NuRadioMC work by Alan Coleman, Maria Duran, Christian Glaser (Uppsala University) UPPSALA UNIVERSITET CORSIKA 8 can be used in dense media (ice) Approximate angle from θ_{Ch} : -8.4° Approximate angle from θ_{Ch} : -0.3° Here: homogeneous ice with n=1.78 with antennas CORSIKA 8 ZHS CORSIKA 8 ZHS 1km from interaction vertex 0.2 NuRadioMC Electric Field (mV/m) NuRadioMC Electric Field (mV/m) 50 ARZ2020 ARZ2020 0.1 **CORSIKA 8** prediction reproduces previous results (ARZ model parameterized from 0.0 ZHAireS simulations) -0.1-50Next step: Study effect of inhomogeneous media -0.2(now enabled by CORSIKA8) 20 40 60 80 100 95 96 97 98 99 0 100 Distance from interaction vertex (m) time (ns) time (ns) 0 10 20 30 40 50 70 60 60 Primary: elg(Etot / eV): 18.0 10^{1} 10 50 Amp (arb.) 10⁽¹⁾ Amp (arb.) 100 40 displaced 10^{-1} 30 sub-showers (LPM effect) 10^{-2} 10 Low-pass 500 MHz Low-pass 2000 MHz 20 1.1 1. C8 / ARZ C8 / ARZ 10 1.0 1.0 00 0.0 1000 2000 3000 4000 5000 6000 7000 10^{1} 10^{3} 10^{1} 10^{2} 10^{3} 10^{2} Integrated density $(g \text{ cm}^{-2})$ Freq (MHz) Freq (MHz)

Charge excess $(e^{-} - e^{+}) / 10^{6}$