Recent Results from the IceCube Neutrino Observatory

Jeff Lazar, on behalf of the IceCube Collaboration 18 Jun., 2024 CRIS-MAC Trapani, Italy

IceCube: What We See and What It Tells Us Characterizing the Diffuse Astrophysical Flux Sources of Astrophysical Neutrinos Future Directions

IceCube: What We See and What It Tells Us Characterizing the Diffuse Astrophysical Flux Sources of Astrophysical Neutrinos Future Directions

The IceCube Neutrino Observatory

- 5,160 digital optical modules (DOMs) detect light from charged by-products of neutrino interactions
- 86 strings including 6 denser DeepCore strings
- In-ice array complemented by 86-station IceTop surface array
- Completed in December 2010 with near constant uptime since

8 strings-spacing optimized for lower energies

In-Ice Signatures

Great energy resolution, but angular reconstruction is challenging

Great directional resolution, but deposited energy not proportional to E_{ν}

CRIS-MAC 2024 | Jeff Lazar

Signature of ν_{τ} CC events

Hunting for Needles in a Haystack

1. Use the outer layers of the detector as veto regions

2. Look into the northern sky, using the Earth to filter cosmic-ray muons

CRIS-MAC 2024 | Jeff Lazar

CRIS-MAC 2024 | Jeff Lazar

CRIS-MAC 2024 | Jeff Lazar

CRIS-MAC 2024 | Jeff Lazar

With these variables, IceCube can probe an extremely broad range of physics goals

IceCube: What We See and What It Tells Us Characterizing the Diffuse Astrophysical Flux Sources of Astrophysical Neutrinos Future Directions

IceCube: What We See and What It Tells Us Characterizing the Diffuse Astrophysical Flux Sources of Astrophysical Neutrinos Future Directions

Through-Going Tracks

The Northern-Sky ν_{μ}

- Track-like events in the Northern Sky where neutrino events are dominant
- Excess of neutrinos above atmospheric background 80 TeV
- This analysis favors a harder energy spectrum, with $\gamma = 2.28$

CRIS-MAC 2024 | Jeff Lazar

Enhanced Starting Tracks

The Southern-Sky ν_{μ}

- Dynamic veto region allows atmospheric
- Best selection of tracks in the Southern Sky

CRIS-MAC 2024 | Jeff Lazar

CRIS-MAC 2024 | Jeff Lazar

CRIS-MAC 2024 | Jeff Lazar

CRIS-MAC 2024 | Jeff Lazar

Global fits are consistent with a single power lower law with $\gamma = 2.5$.

CRIS-MAC 2024 | Jeff Lazar

Global fits are consistent with a single power lower law with $\gamma = 2.5$. However, the data prefer more complex shapes at around 2σ significance

IceCube: What We See and What It Tells Us Characterizing the Diffuse Astrophysical Flux Sources of Astrophysical Neutrinos Future Directions

IceCube: What We See and What It Tells Us Characterizing the Diffuse Astrophysical Flux Sources of Astrophysical Neutrinos Future Directions

Does Our Galaxy Shine in Neutrinos ?

Fermi-LAT has seen our galactic plane shining in HE gamma rays, so where are the associated neutrinos

Swamped in the Southern Sky

- Since much of the Galactic Plane, including the Galactic Center, we will be overwhelmed by atmospheric muons
- Restricting ourselves to cascades will allow us to filter more easily
 - Updated, ML-based reconstruction improved cascade pointing to ~7°
 - Order-of-magnitude improvement in acceptance by reconstructing partially contained events

17

Strong Evidence of the Neutrinos from the Galactic Plane

- Tested three different emission models
- Local significance between at 4.71σ , 4.37σ , and 3.96σ
- Global significance $> 4.5\sigma$

Galactic Contribution to Diffuse Flux

- Galactic Plane emission contributes between 9% and 13% to the total
- There must be powerful accelerators outside the Milky Way

 E_{ν} [GeV]

Northern-Sky Search

- 0.4
- dec. [deg] 0.2
- 0.0
 - -0.2
 - -0.4

CRIS-MAC 2024 | Jeff Lazar

• 81 events give 5.2σ pretrial significance \rightarrow 4.2 σ after trials

80

TXS 0506 and PKS 1424 also have pre-trial significances > 3.5σ

r.a. [deg]

NGC 1068

Oh

 \odot

Signal

Background

Total

Data

Point-Source Contribution to Diffuse Flux

- There are sufficient neutrinos to measure a spectrum for NGC 1068 and TXS 0506
- NGC brightest at low energies and can contribute 1%-5% at 10 TeV
- TXS is contributes ~0.1% to higher-energy flux

IceCube: What We See and What It Tells Us Characterizing the Diffuse Astrophysical Flux Sources of Astrophysical Neutrinos Future Directions

IceCube: What We See and What It Tells Us Characterizing the Diffuse Astrophysical Flux Sources of Astrophysical Neutrinos Future Directions

The IceCube Upgrade

- Seven new, infilled strings
- Much improved efficiency and reconstructions at lowest energies to enable high-precision measurement of oscillation parameters
- Improved calibration and ice model to improve reconstructions across all energies
- Deployment scheduled for 2025-2026 Pole Season

m	
m	

IceCube Gen2

- Extension of in-ice array with surface radio array
- 5x and 2x improvements to effective area and angular resolution
- TXS 2014 flair detectable at $\sim 13\sigma$
- NGC-1068 detected at 10σ with 10 years of data

CRIS-MAC 2024 | Jeff Lazar

Summary and Conclusion

- After one decade of observing the diffuse, high-energy neutrino flux, we are seeing the first hints of a deviation from a power law
- NGC 1068 and the Galactic Plane are neutrino sources at high significance
- IceCube has a rich science program that is at the forefront of many areas of study. Let's chat about it !
- There is a bright future ahead in neutrino astronomy

Backups

Glashow Event

Double Cascade Events

	$ u_{ au,CC}^{\mathrm{astro}}$ [59]	$ u_{\mathrm{other}}^{\mathrm{astro}}$ [59]	$\nu_{\rm conv.}^{\rm atm}$ 60–63	$ u_{\mathrm{prompt}}^{\mathrm{atm}}$ [56, 64–66]	$\mu_{\mathrm{conv.}}^{\mathrm{atm}}$ [67–70]	all background
initial	$160 \pm 0.2 \ (190 \pm 0.3)$	$400 \pm 0.7 \ (490 \pm 0.8)$	580 ± 7	72 ± 0.1	8400 ± 110	$9450 \pm 110~(9540 \pm 110)$
final	$6.4 \pm 0.02 \ (4.0 \pm 0.02)$	$0.3 \pm 0.02 (0.2 \pm 0.01)$	0.1 ± 0.008	0.1 ± 0.001	0.01 ± 0.008	$0.5\pm 0.02~(0.4\pm 0.02)$

