RYAN PLESTID NTN FELLOW, BURKE INSTITUTE, CALTECH COLLABORATORS BEI ZHOU | FERMILAB

Final State Radiation And (Ultra)High Energy Neutrinos

CRIS MAC 2024 | TRAPANI, ITALY | JUNE 2024

ARXIV: [2403.07984](https://arxiv.org/abs/2403.07984)

Neutrino Theory Network

FASER

•Neutrinos are an increasingly important for astrophysics. •Neutrino interactions are crucial to interpret data.

HIGH ENERGY NEUTRINO TELESCOPES

•Neutrinos offer a "sterile" messenger of astrophysical phenomena.

-
- IceCube Gen-2 will instrument a very large area,
- •Few singlet operators available. Focus on "portals".

ULTRAHIGH ENERGY NEUTRINO DETECTION

- to study due to their much smaller flux.
- •Near-term telescopes/facilities planned.
- •Use very different detection strategies.

• Ultra high energy neutrinos (above 100 PeV) are difficult

COLLIDER NEUTRINOS

- New collider based experiments at the LHC.
- •Lab-measurements of ~TeV neutrino energies.
- •Granular detectors with high vertex resolution.

ENERGY ESTIMATORS

- •Estimating the parent neutrino energy is important for all experiments.
- •Any effect which causes a systematic bias in energy reconstruction is important.
- •Photons and muons "look" very different in a detector.

INCLUSIVE VS EXCLUSIVE OBSERVABLES

- •Data sets are growing and can bin events.
- •Differential distributions with respect to e.g. lepton energy.
- Goal of ~10% accuracy as a heuristic benchmark.

Radiative Corrections : The Basics

OLD IDEA

Nuclear Physics B154 (1979) 394–426 © North-Holland Publishing Company

NEW APPLICATIONS

RADIATIVE CORRECTIONS TO HIGH-ENERGY NEUTRINO **SCATTERING**

CERN, Geneva, Switzerland

A. SAVOY-NAVARRO DPhPE, CEN, Saclay, France

Received 19 January 1979

A. DE RÚJULA^{*} and R. PETRONZIO^{**}

USE SPLITTING FUNCTION

REAL PHOTON EMISSION

•Lepton radiates a photon. 1 $2p \cdot q + q^2$ → 1 2*p* ⋅ *q* ∫ d^3q 2*Eq* |ℳ| 2 ∼ ∫ d*ω ω*

• Infrared divergence

REAL PHOTON EMISSION

•Lepton radiates a photon. 1 $2p \cdot q + q^2$ → 1 2*p* ⋅ *q* ∫ d^3q 2*Eq* |ℳ| 2 ∼ ∫ d*θ*² *θ*² + *m*² *ℓ*

•Collinear divergence

VIRTUAL CORRECTIONS

- radiated, we have to include corrections to the process where no photon is radiated.
- •These diagrams *decrease* the cross section.

CANCELS AGAINST REAL RADIATION CONTRIBUTION

• In addition to diagrams where a photon is explicitly

REAL + VIRTUAL CORRECTIONS

- between real and virtual corrections.
- Implies the same for collinear divergences.
	-

 $\int d\Pi \, d\sigma_R^{(1)} + d\sigma_V^{(1)}$

• KLN Theorem implies that IR divergences must cancel

 $d\sigma = d\sigma^{(0)} + \left(d\sigma_R^{(1)} + d\sigma_V^{(1)}\right) + \dots$

 $\left(\frac{a}{4\pi}\right)$ IR AND COLLINEAR
4 π) DIVERGENCES ARE DIVERGENCES ARE RELATED

SPLITTING FUNCTIONS

•We can use a calculation of real radiation to predict logarithmically enhanced parts of virtual correction.

-
- •Result is effectively classical.
- •Think of electron as having a distribution of QED-partons.

SPLITTING FUNCTIONS

•We can use a calculation of real radiation to predict logarithmically enhanced parts of virtual correction.

$$
d\sigma_V^{(1)} \simeq -\int d\Pi_\gamma \, d\sigma_R^{(1)}
$$

•This works for the largest parts of the corrections (double logs)

"TRUE" INELASTICITY: INCLUSIVE

Neutrino Applications

TOTAL CROSS SECTIONS

• The total cross section is by definition inclusive, up to very small bits of phase space that fall below detector threshold.

• KLN theorem guarantees that there are no kinematic logs.

• We can therefore neglect QED radiative corrections of the nucleon lines.

RADIATION OFF NUCLEONS

• If radiaton comes from hadrons, then the "cascade" or "shower" topology is completely inclusive.

LEPTON ENERGY DISTRIBUTIONS: TOY DISTRIBUTION

2.0 1.5 $\frac{1}{\sigma}$ do/dy 1.0 0.5 0.0 -0.5

•Emitting a photon shifts inelasticity strength. •Systematically shifts (y) to

larger values.

INELASTICITY DISTRIBUTIONS

•Shifts in inelasticity are modest *δ*⟨*y*⟩ ∼ 0.03

•Approximate size agrees with counting logarithms.

INELASTICITY DISTRIBUTIONS

•This is because $E_e \sim 4 \times E_{\text{had}}$ $\begin{bmatrix} 0/6 \end{bmatrix}$ D'avg[/]Javg

• In relative terms the shift can be very large.

APPLICATION: *ν*/*ν*¯ RATIO

- •FSR distorts shape of d*σ*/d*y*
- •Significant impact for some observables.
- E.g. *ν/ū* ratio.
- •Sensitive to systematics in y.

STARTING/CONTAINED EVENTS

•Re-balancing of shower vs track energy.

•Can effect energy estimators.

MUON TRACKS

REAL RADIATION MIGRATES STRENGTH

Cascade $X + \gamma$

Track

DOUBLE BANG SIGNATURE

•Reshuffles energy between bangs.

•First bang will have more energy.

TAU REGENERATION

•For regenerated neutrinos FSR can "build up".

•Many interactions means more chances for FSR.

- -

UHE NEUTRINOS

- •External leptons can be necessary to increase effective area.
- •FSR will be lost outside detector.
- Introduces ~5% bias in neutrino energy estimator.

Through-going muon

UHE NEUTRINOS

•Recent proposal to use LPM elongated showers to distinguish flavour.

•Relies on "subtle waveforms".

•FSR will distort these and should be included in templates.

COLLIDER NEUTRINOS

- •Event rate peaks near TeV energies.
- •Detectors are very different than neutrino telescopes.
- •Warrants separate discussion.

•Photon still gets absorbed into shower energy (hard to distinguish from $\pi^0 \to \gamma \gamma$. *π*⁰ → *γγ*

•Electrons may be identifiable with primary vertex ID.

KINEMATICS

•Reconstructed DIS variables get distorted.

$[\Delta Q^2]_{\text{FSR}} \simeq -4E_\nu E_\gamma \sin^2(\theta_\ell/2)$ $[\Delta x]_{\rm FSR} \simeq$ [Δ*Q*²]FSR 2*mNEX* − *Eγ x*(0)

IMPACT ON PDF EXTRACTIONS

• LHC neutrinos can supply best constraints on certain PDFs.

•Specifically strange and quark singlet PDFs.

•Will be important to include radiative corrections for these.

Monte Carlo Implementation

HOW TO IMPLEMENT FSR

• At leading-log accuracy process is essentially classical.

•Can generate lepton "as is".

•Perform a final step where energy fraction to photon is sampled.

Conclusions & Outlook

Conclusions

• Final state radiation can be enhanced by large kinematic

• Effects are ~10% in size when lepton energy is measured.

- logarithms.
-
- Influences reconstruction of kinematic variables and estimates of neutrino energy