Tau neutrinos from GeV to EeV

Mauricio Bustamante Niels Bohr Institute, University of Copenhagen

13th CRIS-MAC Trapani, June 18, 2024

Neutrino oscillations is a three-state system (v_e , v_{μ} , v_{τ}), but we study them using mainly two (v_e and v_{μ})

The **flavor composition** of high-energy cosmic neutrinos reflects the physical conditions inside cosmic accelerators

At ultra-high energies (> 10^{18} eV), v_{τ} provide unique detection opportunities (v_{τ} regeneration, Earth-skimming v_{τ})

Neutrino oscillations is a three-state system (v_e , v_{μ} , v_{τ}), but we study them using mainly two (v_e and v_{μ})

The **flavor composition** of high-energy cosmic neutrinos reflects the physical conditions inside cosmic accelerators

3

At **ultra-high energies** (> 10¹⁸ eV), v_{τ} provide unique detection opportunities (v_{τ} regeneration, Earth-skimming v_{τ})

Do GeV v_{τ} interact as expected?

Using GeV-scale atmospheric and accelerator v_{τ} :

Tau neutrinos can test the three-neutrino paradigm

Flavor-transition probabilities change if there are additional, sterile flavors:

DUNE: identifying many more GeV-scale v_{τ}

No improvement to measurements of the neutrino mixing parameters...

DUNE: identifying many more GeV-scale v_{τ}

No improvement to measurements of the neutrino mixing parameters...

... but improved testing of the 3v paradigm

The intermediate energy range: TeV-scale v_{τ}

Place a neutrino detector on the path of the LHC beam:

The intermediate energy range: TeV-scale ν_τ

Neutrino oscillations is a three-state system (v_e , v_{μ} , v_{τ}), but we study them using mainly two (v_e and v_{μ})

The **flavor composition** of high-energy cosmic neutrinos reflects the physical conditions inside cosmic accelerators

At ultra-high energies (> 10^{18} EeV), v_{τ} provide unique detection opportunities (v_{τ} regeneration, Earth-skimming v_{τ})

Astrophysical sources

Earth

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta}\to\nu_{\alpha}} f_{\beta,S}$$

Astrophysical sources

Earth

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth (
$$\alpha = e, \mu, \tau$$
):

$$f_{\alpha, \oplus} = \sum_{\beta = e, \mu, \tau} P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta, S}$$
Standard oscillations
or
new physics

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

One likely TeV–PeV v production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$

Full π decay chain (1/3:2/3:0)_s

Note: v and \overline{v} are (so far) indistinguishable in neutrino telescopes

One likely TeV–PeV v production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$ 0.0 S O -1.0 π decay Full π decay chain 0.1-0.9 $(1/3:2/3:0)_{S}$ 0.2 - 0.8 0.3 -0.7 Fraction of Vr Fraction of NH 0.4 - 0.6 0.5 - 0.5 0.6 -0.30.8 -0.2 0.9 -0.1 1.0 -0.0 *Note:* v and \overline{v} are (so far) indistinguishable 0.0 0.2 0.6 0.7 0.8 0.9 1.0 0.1 0.3 0.40.5 in neutrino telescopes Fraction of v_e
One likely TeV–PeV v production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$ 0.0 $S \oplus$ -1.0 $\bigcirc \bullet \pi$ decay Full π decay chain 0.1 -0.9 $(1/3:2/3:0)_{S}$ 0.2 - 0.8 0.3 0.7 Fraction of Vr Fraction of VH 0.4-0.6 0.5 0.5 0.6 -0.3 0.8 -0.2 0.9 -0.11.0 -0.0 *Note:* v and \overline{v} are (so far) indistinguishable 0.8 0.0 0.1 0.2 0.3 0.40.5 0.6 0.7 0.9 1.0 in neutrino telescopes Fraction of v_e

Use the flavor sensitivity to test new physics:

Use the flavor sensitivity to test new physics:

Use the flavor sensitivity to test new physics:

Neutrino decay

Reviews:

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Use the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Reviews:

Use the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, PRD 2003; **MB**, Gago, Peña-Garay, JHEP 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, PRL 2015]

Reviews:

Use the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Non-standard interactions

[González-García *et al., Astropart. Phys.* 2016; Rasmussen *et al., PRD* 2017]

Reviews:

Use the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation [Barenboim & Quigg, PRD 2003; MB, Gago, Peña-Garay, [HEP 2010;

Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, PRL 2015]

Non-standard interactions

[González-García *et al., Astropart. Phys.* 2016; Rasmussen *et al., PRD* 2017]

Active-sterile v mixing

[Aeikens *et al., JCAP* 2015; Brdar, Kopp, Wang, *JCAP* 2017; Argüelles *et al., JCAP* 2020; Ahlers, **MB**, *JCAP* 2021]

Reviews:

Use the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Non-standard interactions

[González-García *et al., Astropart. Phys.* 2016; Rasmussen *et al., PRD* 2017]

Active-sterile v mixing

[Aeikens *et al.*, *JCAP* 2015; Brdar, Kopp, Wang, *JCAP* 2017; Argüelles *et al.*, *JCAP* 2020; Ahlers, **MB**, *JCAP* 2021]

Long-range ev interactions [MB & Agarwalla, PRL 2019]

Reviews:

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

From Earth to sources: we let the data teach us about $f_{\alpha,S}$

Neutrino oscillations is a three-state system (v_e , v_{μ} , v_{τ}), but we study them using mainly two (v_e and v_{μ})

The **flavor composition** of high-energy cosmic neutrinos reflects the physical conditions inside cosmic accelerators

At ultra-high energies (> 10^{18} EeV), v_{τ} provide unique detection opportunities (v_{τ} regeneration, Earth-skimming v_{τ})

TeV–PeV:

Earth is *almost fully* opaque, some upgoing v still make it through

TeV–PeV: IceCube

> 100 PeV:

Earth is *almost fully* opaque, some upgoing v still make it through

Earth is *completely* opaque, but horizontal v still make it through

TRINITY — Detecting Cherenkov light

- Atmospheric Cherenkov imaging applied to PeV neutrinos
- Pioneered by MAGIC (pointing at Atlantic), ASHRA, and NTA (Mauna Kea)
- ▶ TRINITY: 3 arrays each of 6 mirrors of 10 m²

TAU AIR-SHOWER MOUNTAIN-BASED OBSERVATORY (TAMBO) · COLCA VALLEY, PERU

PUEO Payload for Ultrahigh Energy Observations

30-day flight above Antarctica Builds on earlier ANITA I–IV flights

POEMMA, JCAP 2021 (2012.07945)

POEMMA: Probe of Extreme Multi-Messenger Astrophysics

Fluorescence

Observing fluorescence and Cherenkov radiation from space using twin satellites

Cherenkov radiation POEMMA=Limb

POEMMA, JCAP 2021 (2012.07945)

POEMMA: Probe of Extreme Multi-Messenger Astrophysics

Fluorescence

POEMMA-Stereo

~300 km

~500 km

Observing fluorescence and Cherenkov radiation from space using twin satellites

UHECR EAS

~2,300 km

Cherenkov radiation POEMMA=Limb

Ś

Tau-decay EAS

Multi-shower events from $v_{\mu} + v_{\tau}$ in IceCube-Gen2 (radio)

Multi-shower v_e CC interactions in IceCube-Gen2 (radio)

IceCube-Gen2 (radio) alone might measure flavor

Coleman, Ericsson, MB, Glaser, 2402.02432

GRAND, Sci. China Phys. Mech. Astron. 2020 [1810.9994]

What if future UHE radio-detection neutrino telescopes cannot see flavor?

Then we combine two of detectors:

What if future UHE radio-detection neutrino telescopes cannot see flavor?

Then we combine two of detectors:

indistinct detection of all flavors by IceCube-Gen2 (radio)

What if future UHE radio-detection neutrino telescopes cannot see flavor?

Then we combine two of detectors:

indistinct detection of all flavors by IceCube-Gen2 (radio)

+

predominant detection of v_{τ} by GRAND

What if future UHE radio-detection neutrino telescopes cannot see flavor?

Then we combine two of detectors:

indistinct detection of all flavors by IceCube-Gen2 (radio)

+

predominant detection of v_{τ} by GRAND

=

sensitivity to the fraction of UHE v_{τ}

What if future UHE radio-detection neutrino telescopes cannot see flavor?

Then we combine two of detectors:

indistinct detection of all flavors by IceCube-Gen2 (radio)

+

predominant detection of v_{τ} by GRAND

=

sensitivity to the fraction of UHE v_{τ}

What if future UHE radio-detection neutrino telescopes cannot see flavor?

Then we combine two of detectors:

indistinct detection of all flavors by IceCube-Gen2 (radio)

+

predominant detection of v_{τ} by GRAND

=

sensitivity to the fraction of UHE v_{τ}

Accessing the full UHE flavor information

IceCube-Gen2 (no flavor-id) + GRAND: Access to v, fraction

IceCube-Gen2 (with flavor-id): Access to v_e fraction and $v_{\mu}+v_{\tau}$ fraction

Neutrino oscillations is a three-state system (v_e , v_{μ} , v_{τ}), but we study them using mainly two (v_e and v_{μ})

The **flavor composition** of high-energy cosmic neutrinos reflects the physical conditions inside cosmic accelerators

At ultra-high energies (> 10^{18} EeV), v_{τ} provide unique detection opportunities (v_{τ} regeneration, Earth-skimming v_{τ})

Thanks!