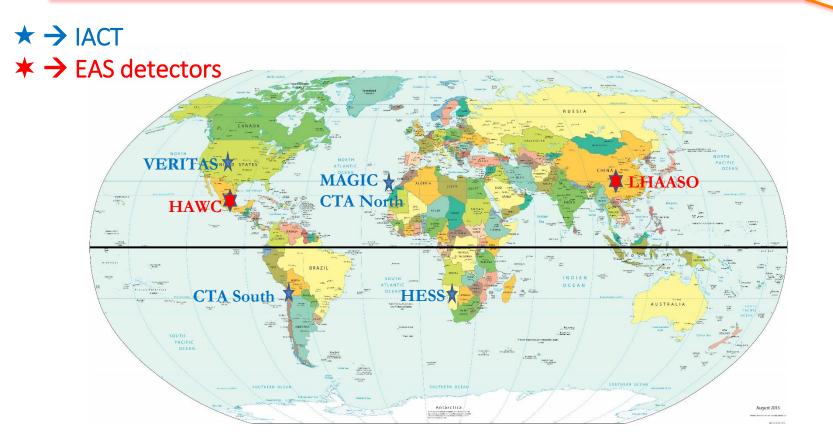


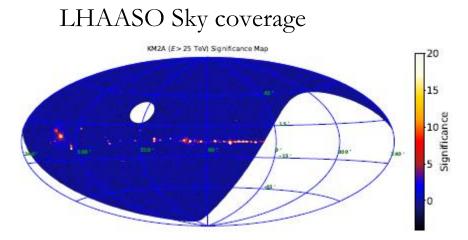
SWGO: a Southern hemisphere wide field of view observatory

Andrea Chiavassa

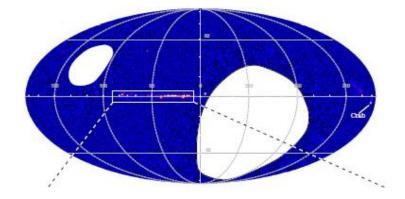
Università degli Studi di Torino & INFN

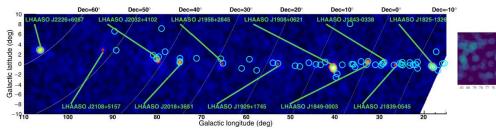


VHE and UHE γ-ray astronomy


- ◎Ground based search for very and ultra high energy gamma ray sources is performed with two complementary techniques: IACT and EAS particle detection.
- ◎IACTs reach better angular and energy resolution but are pointing instruments and have a limited duty cycle.
- ◎EAS particle detectors have a wide field of view and high duty cycle but are limited in angular and energy resolution.
- ⊙At ultra high energy (E>100 TeV), working in background free mode EAS particle detectors have currently reached a better sensitivity.
- ◎In the last years "wide field of view" observatories (LHAASO and HAWC) detected gamma ray sources at E>50 TeV
 - → HAWC (ICRC 2023) 28 sources E>56 TeV; 17 E>100 TeV; 6 E>177 TeV
 - → LHAASO (2305.17030v1) 43 sources E>100 TeV

Operating ground based experiments





and Galactic Plane map (E>100 TeV)

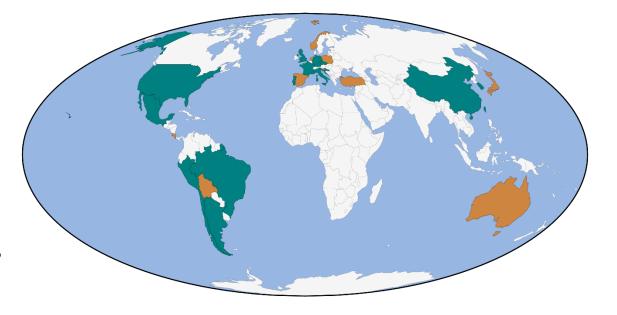
HAWC Sky coverage

and Galactic Plane map (E>100 TeV)

PRELIMINARY

- ◎ SWGO: The Southern Wide-field Gamma-ray Observatory is a gamma-ray observatory based on ground-level particle detection, with close to 100% duty cycle and order steradian field of view.
- ◎ SWGO is currently in the R&D phase.
- ◎ Willing to cover the 100 GeV-1 PeV energy range the array must be located at an altitude of 4.4 km or higher (low energies) and extend over a km² area (high energies).
- \bigcirc Located in South America at a latitude between 10° and 30° south.
- O Based primarily on water Cherenkov detector units.
- ◎ With a high fill-factor core detector with area considerably larger than HAWC and significantly better sensitivity, and a low-density outer array.
- \bigcirc Improved angular (<0.2°) and energy resolutions (<30%) above 10 TeV.

SWGO Science Benchmarks


Core Science Case	Design Drivers	Benchmark Description
Transient Sources: Gamma-ray Bursts	Low-energy Site altitude	Min. time for 5σ detection F(100 GeV)= 10 ⁻⁸ erg cm ⁻² s ⁻¹
Galactic Accelerators: PeVatron Sources	High-energy sensitivity Energy resolution	Maximum exp-cutoff energy detectable 95% CL in 5 years for: F(1 TeV)= 5 mCrab, index= -2.3
Galactic Accelerators: PWNe and TeV Halos	Extended source sensitivity Angular resolution	Max. angular extension detected at 5 σ in 5-yr integration for: F(>1 TeV)= 5 × 10 ⁻¹³ TeV cm ⁻² s ⁻¹
Diffuse Emission: Fermi Bubbles	Background rejection	Minimum diffuse cosmic-ray residual background level. Threshold: < 10 ⁻⁴ level at 1 TeV.
Fundamental Physics: Dark Matter from GC Halo	Mid-range energy sensitivity Site latitude	Max. energy for bb^- thermal relic cross-section at 95% CL in 5-yr, for Einasto profile.
Cosmic-rays: Mass- resolved dipole Multipole anisotropy	Muon counting capability	Max. dipole energy at 10^{-3} level. Log-mass resolution at 1 PeV – goal is $A = 1, 4, 14, 56$; Maximum multipole scale > 0.1 PeV.

SWGO Collaboration

⊘SWGO Collaboration:

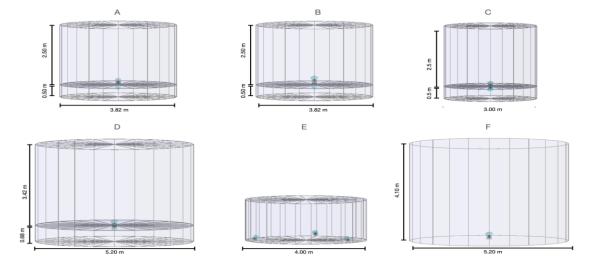
- → 15 Nations, +90 Institutions
- → Argentina, Brazil,
 Chile, China, Croatia,
 Czech Republic,
 France, Germany,
 Italy, Mexico, Perù,
 Portugal, South Corea,
 United Kingdom,
 United States.

Site Search

- ◎Candidate Sites identified in Argentina, Chile and Perù.
- ◎Latitude between 14°S and 24°S
- ⊘Altitude between 4400m and 4850m a.s.l.
- ⊙All sites can host a 1 km² array.
- ⊙ The SWGO collaboration is aiming to mantain a close engagment with the local communities during the site selection process.

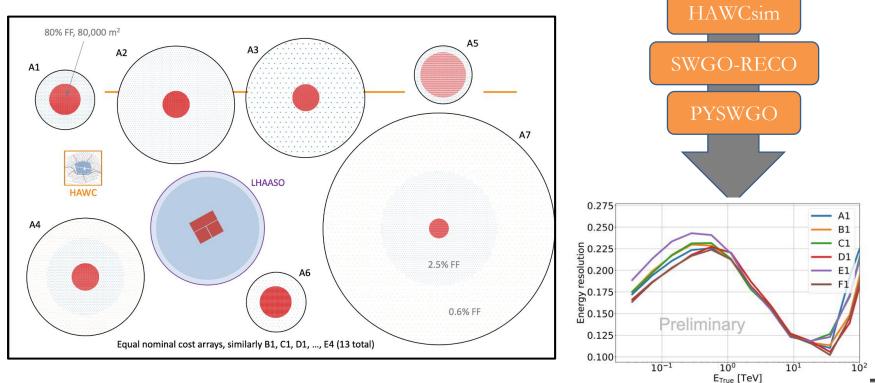
Site Search

- ⊙Three sites under evaluation as primary candidate sites for a tank array.
- ⊙Lake option currently considered as part of the SWGO programme for a future extension towards higher energies.
- Opond option is feasible only at the Imata site.



Array Optimization Studies

- Simulation of the performance of different WCD tank concepts and array configurations to select most promising candidates.
- ◎ Results at E>50 TeV are strongly limited by the available simulation statistics.



Array Optimization Studies

CORSIKA

Different layouts are defined at equal nominal cost.

WCD Unit Design

Olifferent tank designs have been compared:

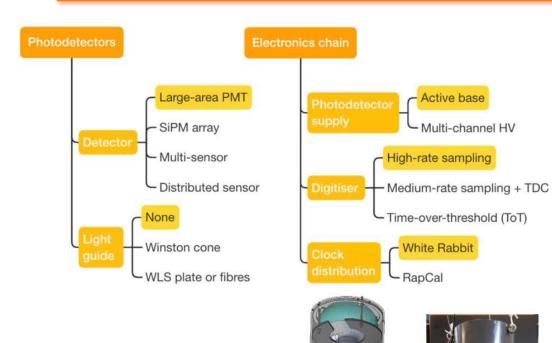
- → double layer (with a single central PMT per layer)
- → deep single layer with a single central PMT
- → shallow single layer with 3 PMTs.
- ⊙All models reach a performance allowing to obtain the SWGO scientific objectives.

WCD Unit Design

◎For the inner array double layer tanks give the most promising performance.

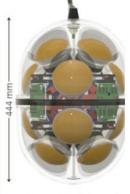
- ◎Large WCD unit results in significant improvements in background rejection.
- ⊙The results of the simulation studies suggest that inner array tanks should be:
 - \rightarrow A double layer tank with a single centrally deployed photo-sensor unit
 - \rightarrow Diameter between 3.8m and 5.5m
 - \rightarrow Overall depth between 3.0m and 4.5m
 - → White wall lower chamber and either partially or fully black upper
- ◎ The current statistics at UHE do not allow us to reach strong conclusions on the outer array WCD.

⊙At the low energies a smaller inner array with an extreme fill factor doesn't allow to reach better sensitivity and resolution if compared to a larger inner array with a smaller fill factor.

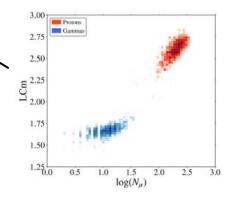

◎Inner array will have a radius between 140m and 220m and a fill factor between 40% and 80%.

⊙At the high energies the currently simulated statistics is not allowing strong conclusions above 50 TeV.

- \rightarrow Too large arrays (FF<1%) have a poor low-mid energy performance.
- \rightarrow A two zones (with degrading FF) approach looks promising.
- \rightarrow We don't see a negative impact on the performance clustering the outer array stations.

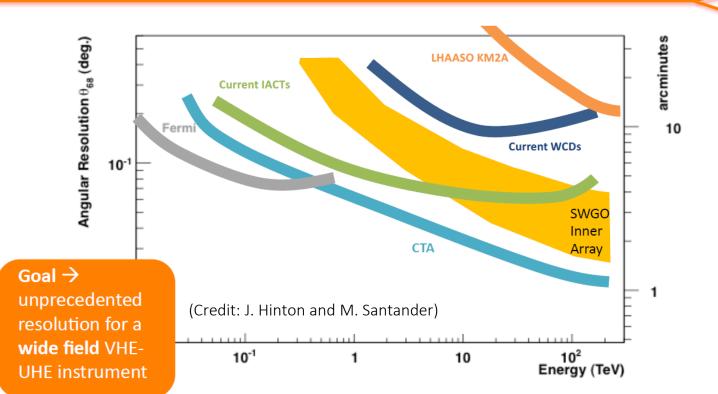

Outer array radius between 600m and 800m. Details will be studied by a dedicated simulation.

16 PMT model



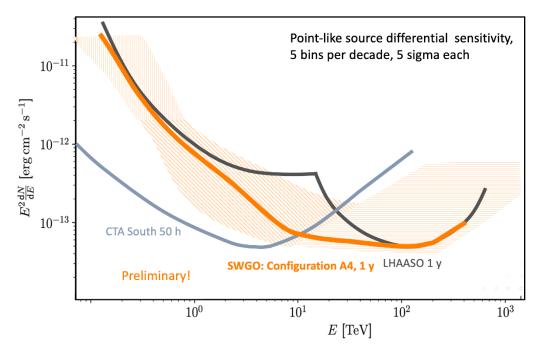
New strategies

- The use of double layer tanks is a new solution for WCD arrays, engineering solutions to realize them are under test.
- We are studying new variables to perform the gamma/hadron discrimination



LCm, fluctuations of the azimuthal shower footprint

New event reconstruction algorithms based on template fitting or on NN.


Angular resolution goal

Expected Sensitivity

OPreliminary expected sensitivity calculated for one of the test configuration studied.

⊙SWGO is in an advanced phase of the R&D process

Strong motivation for a wide field of view, high duty cycle observatory in the Southern hemisphere

→ MMA studies

- → Follow up of transients
- → Gamma ray observations in the 100 GeV-1 PeV energy range
- → DM searches
- \rightarrow CR anisotropy and spectra for different mass groups
- ⊙Synergies with current and future instruments
- [⊙]2026 engineering array
- [⊚]2027-2030 construction phase