

Cosmic Rays @ LHAASO

Zhen Cao, IHEP On behalf of LHAASO Collaboration

CRIS-MAT Workshop, Italy, Oct. 2024

Outline

LHAASO experiment

- Pure Proton Sample
- Light Component (H + He) Sample
- □ All Particle Spectrum and Composition

LHAASO Collaboration 275 members from 31 institutions in 5 countries

Zhen Cao,^{1,2,3} F. Aharonian,^{4,5} Q. An,^{6,7} Axikegu,⁸ L.X. Bai,⁹ Y.X. Bai,^{1,3} Y.W. Bao,¹⁰ D. Bastieri,¹¹ X.J. Bi^{*},^{1,2,3} Y.J. Bi,^{1,3} H. Cai,¹² J.T. Cai,¹¹ Zhe Cao,^{6,7} J. Chang,¹³ J.F. Chang,^{1,3,6} B.M. Chen,¹⁴ E.S. Chen^{*},^{1,2,3} J. Chen,⁹ Liang Chen,^{1,2,3} Liang Chen,¹⁵ Long Chen,⁸ M.J. Chen,^{1,3} M.L. Chen,^{1,3,6} Q.H. Chen,⁸ S.H. Chen,^{1,2,3} S.Z. Chen,^{1,3} T.L. Chen,¹⁶ X.L. Chen,^{1,2,3} Y. Chen,¹⁰ N. Cheng,^{1,3} Y.D. Cheng,^{1,3} S.W. Cui,¹⁴ X.H. Cui,¹⁷ Y.D. Cui,¹⁸ B. D'Ettorre Piazzoli,¹⁹ B.Z. Dai,²⁰ H.L. Dai,^{1,3,6} Z.G. Dai,⁷ Danzengluobu,¹⁶ D. della Volpe,²¹ X.J. Dong,^{1,3} K.K. Duan,¹³ J.H. Fan,¹¹ Y.Z. Fan,¹³ Z.X. Fan,^{1,3} J. Fang,²⁰ K. Fang,^{1,3} C.F. Feng,²² L. Feng,¹³ S.H. Feng,^{1,3} Y.L. Feng,¹³ B. Gao,^{1,3} C.D. Gao,²² L.Q. Gao*,^{1,2,3} Q. Gao,¹⁶ W. Gao,²² M.M.

Ge,²⁰ L.S. Geng,^{1,3} G.H. Gong,²³ Q.B. Gou,^{1,3} M.H. Gu,^{1,3,6} F.L. Guo,¹⁵ J.G. Guo,^{1,2,3} X.L. Guo,⁸ Y.Q. Guo,^{1,3} Y.Y. Guo,^{1,2,3,13} Y.A. Han,²⁴ H.H. He,^{1,2,3} H.N. He,¹³ J.C. He,^{1,2,3} S.L. He,¹¹ X.B. He,¹⁸ Y. He,⁸ M. Heller,²¹ Y.K. Hor,¹⁸ C. Hou,^{1,3} X. Hou,²⁵ H.B. Hu,^{1,2,3} S. Hu,⁹ S.C. Hu,^{1,2,3} X.J. Hu,²³ D.H. Huang,⁸ Q.L. Huang,^{1,3} W.H. Huang,²² X.T. Huang,²² X.Y. Huang,¹³ Z.C. Huang,⁸ F. Ji,^{1,3} X.L. Ji,^{1,3,6} H.Y. Jia,⁸ K. Jiang,^{6,7} Z.J. Jiang,²⁰ C. Jin,^{1,2,3} T. Ke,^{1,3} D. Kuleshov,²⁶ K. Levochkin,²⁶ B.B. Li,¹⁴ Cheng Li,^{6,7} Cong Li,^{1,3} F. Li,^{1,3,6} H.B. Li,^{1,3} H.C. Li,^{1,3} H.Y. Li,^{7,13} Jian Li,⁷ Jie Li,^{1,3,6} K. Li,^{1,3} W.L. Li,²² X.R. Li,^{1,3} Xin Li,^{6,7} Xin Li,⁸ Y. Li,⁹ Y.Z. Li,^{1,2,3} Zhe Li,^{1,3} Zhuo Li,²⁷ E.W. Liang,²⁸ Y.F. Liang,²⁸ S.J. Lin,¹⁸ B.
Liu,⁷ C. Liu,^{1,3} D. Liu,²² H. Liu,⁸ H.D. Liu,²⁴ J. Liu,^{1,3} J.L. Liu,²⁹ J.S. Liu,¹⁸ J.Y. Liu,^{1,3} M.Y. Liu,¹⁶ R.Y. Liu,¹⁰ S.M. Liu,⁸ W. Liu,^{1,3} Y. Liu,¹³ D. Liu,²² X.R. Ku,^{1,3} M. Mathumsi,³⁰ T. Montaruli,²¹ Y.C. Nan,²² B.Y. Pang,⁸ P. Pattarakijwanich,³⁰ Z.Y. Pei,¹¹ M.Y. Qi,^{1,3} Y.Q. Qi,¹⁴ B.Q. Qia,^{1,3} J.J. Qin,⁷ D. Ruffolo,³⁰ V. Rulev,²⁶ A. Saiz,³⁰ L. Shao,¹⁴ O. Shchegolev,^{26,31} X.D. Sheng,^{1,3} J.R. Shi,^{1,3} H.C. Song,²⁷ Yu.V. Stenkin,^{26,31} V. Stepanov,²⁶ Y. Su,¹³ Q.N. Sun,⁸ X.N. Sun,²² L.S. Wang,²⁹ L.P. Wang,²² L.Y. Wang,^{1,3} R.N. Wang,⁸ W. Wang,¹⁸ W. Wang,¹² X.G. Wang,²⁸ H.G. Wang,¹¹ J.C. Wang,²⁵ J.S. Wang,⁹ L.P. Wang,²¹ X.J. Wang,^{1,3} R.N. Wang,⁸ W. Wang,¹⁸ W. Wang,¹⁸ W. Wang,¹⁴ X.G. Wang,¹⁵ Y.D. Wang,^{1,5} Y.P.

~25,000 m

CATCHING RAYS

China's new observatory will intercept ultra-high-energy γ-ray particles and cosmic rays.

LHAASO Physics Topics

18 wide-field-of-view

Gamma Ray Astronomy

Charged CRs

4,400 m

New Physics Frontier

air Cherenkov telescopes 5,195 scintillator detectors

78,000-m² surfacewater Cherenkov detector

1188 underground water Cherenkov tanks

WCDA

LHAASO bird view on August 2021

> Location: Haizi Moutain, Daochen, Sichuan, China

• Altitude: 4410 m a.s.l.

• 2021-07: The full array was complete and in operation

KM2A: 1.36 (km)²

- ¹/₄ array operation: 2019/09
- ¹/₂ array operation: 2020/01
- ³/₄ array operation: 2020/12
- Full array operation: 2021/7

KM2A: 1.36 (km)²

≻5195 EDs

- A: 1 m²
- S: 15 m
- ≻1188 MDs
 - A: 36 m²
 - S: 30 m

MD Bladder

Inner View of Scintillator Detector

Wide Field of View Cherenkov Telescope (WFCTA)

Telescopes:

- ~5 m² spherical mirror
- Camera: 32×32 SiPMs array
- FOV: $16^{\circ} \times 16^{\circ}$

18 Telescopes

- Pixel size: 0.5°
- >30% duty cycle in winter

Mirror

SiPM and Winston cone

Operation of LHAASO

- KM2A is operated with >99.4% duty cycle and event rate 2x10⁸/day
- WCDA is operated with 98.4% and event rate 3x10⁹/day
- ✤ Data acquisition time of WFCTA >1400 hrs and number of matched events ~70 million

Telescope observation with the full moon

Measurements using KM2A+WFCTA

1.

2.

3.

4.

2.

□ LHAASO experiment

- **D** Pure Proton Sample
- □ Light Component (H + He) Sample
- □ All Particle Spectrum and Composition

Muon Content in Showers

 $P_{\mu} = \log_{10} \frac{\rho_{\mu}}{\rho_e^{0.83}}$ $\rho_{\mu}: muon \ density \ in \ the \ ring \ between \ 40m \ and \ 200m \ from \ the \ core$ $\rho_e: EM - particle \ density \ in \ the \ ring \ between \ 40m \ and \ 200m$

FoM:0.726244

Shower Maximum Depth

483.4 / 14

 0.7725 ± 0.0099

 0.01322 ± 0.00004

 χ^2 / ndf

p0

p1

5

15

16

Efficiency versus Purity (30%)

2. Difference between Composition Assumptions

高海拔宇宙後観测站 Large High Altitude Air Shower Observatory

Selection efficiency 30% vs. 20%

20

Shower Energy Reconstruction

島海拔宇宙後観測站 □ Large High Altitude Air Shower Observatory

21

Systematic biases due to the primary composition

Bias is minimized for Proton sample, i.e. <1% The energy is clearly underestimated for showers induced by heavier species

Note: This has advantages in proton selection due to steep spectra of heavier species

quite stable between 10% and 12% above 300 TeVelection dueNote: This is a good feature for identifying any

spectral structure like the knee

due to the shower-to-shower fluctuations,

The resolution is slightly worse than other species

D Pure Proton Sample

□ Light Component (H + He) Sample

□ All Particle Spectrum and Composition

Muon Content in Showers

Pure Proton Sample

□ Light Component (H + He) Sample

□ All Particle Spectrum and Composition

All particle spectrum by LHAASO

<InA> reconstructed by muon in KM2A

A is the mass of the cosmic ray, ε_c is the critical energy where charge pions blow it then are all assumed to decay (yielding muons), and $\beta \approx 0.9$ varying with the primary energy.

$$\ln N_{\mu} = p_0 + p_1 \cdot \ln A$$

All-particle energy spectrum & composition by LHAASO

- Systematic uncertainties are sufficiently small
 - This unveils a
 clear
 correlation
 between the
 flux and the
 composition at
 the knee

Discussion

- The composition is getting lighter towards the knee
- Iron may bump up around 400 TeV (hinted by the proton at 13 TeV and Helium at 34 TeV)
- LHAASO is trying hard to measure the Iron spectrum around 400 TeV by lowering the threshold energy

Summary

- LHAASO is designed to dedicate on the measurements of knees of CR species
- The knee of pure proton spectrum
 - Criteria for selection are developed
 - Systematic uncertainty analysis
- H + He mixed sample is also ready
 - Helium spectrum will be resolved
- All-particle spectrum
 - The knee has been confirmed
 - CR Composition is measured by using <InA> showing correlation with the spectrum
- The iron spectrum around 400 TeV is crucial and will be measured
- The knee of the iron spectrum is the goal for many years