Cosmic Ray Studies with The High-Altitude Water Cherenkov Observatory

Wayne Springer

Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA On Behalf of the [HAWC Collaboration](https://www.hawc-observatory.org/collaboration/)

- **The HAWC Detector**
	- **Design Principles**
	- **Reconstruction Techniques**
	- **Simulation**
- **HAWC Cosmic Ray Studies**
	- **All-particle Energy Spectrum**
	- **Composition studies**
	- **Anisotropy of Arrival Directions**
	- **Sources of Cosmic Rays – PeVatrons?**
	- **Other cosmic ray-related studies**
- **Summary + Future Outlook**
- **References**

June 17,2024 Trapani, Italy

HAWC Observatory - Design Principles

Reconstruction of Energy & Arrival Direction:

Core Location , Lateral Distribution, Plane Fit

EAS - Energy Reconstruction

Energy Estimator for Cosmic Ray Energy Spectrum Analyses

- "Ground Parameter" from Lateral Distribution function
- Use simulated four-dimensional probability table with bins in: Primary Energy, Zenith angle, PMT distance from core (lateral distance), PMT signal amplitude.
- Perform likelihood fit to PMT signals to obtain energy estimate

Energy Calibration using The Moon!

FIG. 5. Relative intensity of the Moon shadow at a mean energy of 4.3 TeV. The map has been smoothed with a top-hat function by 1° to enhance the shadow visually. A two-dimensional Gaussian was fit to the unsmoothed maps.

Cosmic Ray Studies with the High-Altitude Water Cherenkov (HAWC) Observatory 1988 TO BE ALTENATY SUPPRET SETTLE SAFTER

Extensive Air Shower & Detector Simulation

<https://journals.aps.org/prd/pdf/10.1103/PhysRevD.105.063021> <https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.122001>

TABLE III. Values of the parameters of three composition models used in the present analysis. The models were derived from fits with expression (A1) to the ATIC-2 [90], JACEE [65], and MUBEE [91] measurements on the elemental spectra of cosmic rays.

Cosmic Ray Studies – All-particle Energy Spectrum

Cosmic Ray Studies with the High-Altitude Water Cherenkov (HAWC) Observatory

7 THE UNIVERSITY OF UTAH Department of Physics & Astronomy

All-particle Energy Spectrum Analysis

Department of **Physics & Astronom**

All-particle Energy Spectrum Analysis:

Composition Dependence & Energy Unfolding

FIG. 7. The left panel shows the efficiencies $\epsilon(E)$ for all combined cosmic ray particles and individually for proton, helium, and iron components. The energy response matrix $P(E_{\text{reco}}|E)$ for all species using the composition defined in Table I is shown on the right. The deviation from the diagonal and the width of $P(E_{\text{reco}}|E)$ are simply the bias and resolution, respectively, already presented in Fig. 4.

All-particle Energy Spectrum Analysis: Results, Systematic Uncertainties & Comparisons

TABLE IV. Values of the all-particle cosmic-ray energy spectrum from 10–500 TeV including uncertainties. The second column is the number of events unfolded, or the distribution $N(E)$. The label "stat" represents the statistical uncertainties, "sys_{MC}" is for the uncertainties from the limited amount of simulation, and "sys" represents the remaining sources of systematic uncertainty added in quadrature.

TABLE III. Summary of systematic uncertainties. The contribution from each source was determined by varying that source independently, while holding all others fixed at their nominal values. The contributions from all sources are added in quadrature to conservatively estimate the total systematic uncertainty.

Cosmic Ray Spectrum of Protons Plus Helium (PRD2022)

In HAWC, the lateral age of EAS is obtained event by event from a χ^2 fit with a modified Nishimura-Kamata-Greisen function.

$$
f(r) = A \left(\frac{r}{r_0}\right)^{s-3} \left(1 + \frac{r}{r_0}\right)^{s-4.5},\tag{1}
$$

FIG. 1. The lateral effective charge distribution of an EAS event measured with HAWC on June 2, 2019. The estimated energy, zenith angle, and azimuth are $log_{10}(E_{rec}/GeV) = 5.05$, $\theta = 1.04^{\circ}$, and $\phi = 202.24^{\circ}$, respectively. The gray dots represent the measured Q_{eff} per PMT in PE (photoelectron) units. The vertical errors are the systematic uncertainties. The result of the fit with Eq. (1) is shown with a red line. The corresponding fit parameters are shown; the number of degrees of freedom is 1018.

FIG. 4. Predictions of the QGSJET-II-04 model for the energy dependence of the mean lateral age in vertical air showers initiated by four cosmic ray species at HAWC. From top to bottom, the MC points correspond to Fe (solid triangles), C (hollowed triangles), He (hollowed circles), and H (solid circles) primaries, respectively. For clarity, not all the elemental nuclei simulated in this work were included in the plot. HAWC data has also been added to the figure. They are shown with black squares. The $s_{\text{He}-\text{C}}$ cut employed to extract the enriched subsample of light nuclei is plotted using a dashed line in red.

Cosmic Ray Studies with the High-Altitude Water Cherenkov (HAWC) Observatory
 Cosmic Ray Studies With the High-Altitude Water Cherenkov (HAWC) Observatory

Cosmic Ray Spectrum of Protons Plus Helium: Results & comparison

 $\begin{array}{c} \Phi(E) \pm \delta \Phi_{\rm stat} + \delta \Phi_{\rm syst} - \delta \Phi_{\rm syst} \\ [\mathrm{m}^{-2}\mathrm{s}^{-1} \mathrm{~sr}^{-1} \mathrm{~GeV}^{-1}] \end{array}$ E \Box Energy Unfolding & Age-dependent cuts have $[GeV]$ enabled the measurement of the composition 7.94×10^{3} $(8.44 \pm 0.07 + 0.45 - 1.06) \times 10^{-7}$ dependence of the Energy Spectrum of Cosmic 1.26×10^{4} $(2.66 \pm 0.03 + 0.14 - 0.38) \times 10^{-7}$ Rays 2.00×10^{4} $(8.34 \pm 0.12 + 0.46 - 1.36) \times 10^{-8}$ 3.16×10^{4} $(2.42 \pm 0.05 + 0.29 - 0.45) \times 10^{-8}$ $(6.55 \pm 0.16 + 1.11 - 1.33) \times 10^{-9}$ 5.01×10^{4} \square Results for the proton plus helium component are 7.94×10^{4} $(1.77 \pm 0.05 + 0.41 - 0.39) \times 10^{-9}$ presented here from the referenced paper. 1.26×10^{5} $(4.95 \pm 0.19 + 1.43 - 1.12) \times 10^{-10}$ \Box Further development work on Energy Estimators $\Phi(E) = \Phi_0 E^{\gamma}$ $\Phi(E) = \Phi_0 E^{\gamma_1},$ using Neural Networks $\Phi_0 = 10^{4.32 \pm 0.02}$ m⁻² s⁻¹ sr⁻¹ GeV⁻¹. $\Phi_0 = 10^{3.71 \pm 0.09}$ m⁻² s⁻¹ sr⁻¹ GeV⁻¹ $\gamma_1 = -2.51 \pm 0.02$, $\gamma_1 = -2.66 \pm 0.01$, \Box Work is ongoing to further decompose energy $\gamma_2 = -2.83 \pm 0.02$, spectrum into proton, helium and heavy mass $\chi_0^2 = 177.51$, for $\nu_0 = 5$ degrees of freedom. $E_0 = 10^{4.38 \pm 0.06}$ GeV, $\varepsilon = 9.8 \pm 4.1$. groups of cosmic rays [\(https://pos.sissa.it/444/299/pdf\)](https://pos.sissa.it/444/299/pdf) $\chi_1^2=0.26$ For 2 degrees of freedom HAWC data: H+He $\theta = [0.00^{\circ}, 16.70^{\circ}]$ $\mathbb{F}^{2.6}\Phi(E)$ [m 2 s' 1 sr' 1 GeV $^{1.6}$] $\delta E = \pm 16\%$ \bullet H+He **HAWC** data $E^{2,6}\Phi(E)$ [m⁻² s⁻¹ sr⁻¹ GeV^{1.6}]
 $\frac{1}{\tilde{Q}}$ 0^o JACEE (98) ATIC-02 (09) **CREAM (17)** NUCLEON (19 DAMPE (19) **EAS-TOP (04)** ARGO-YBJ (15) TIBET AS-gamma (EPOS-LHC, 19) 4.5 5.5 3.5 4 5 3.8 4.2 4.6 4.8 5 5.2 4.4 $log_{10}(E/\text{GeV})$ $log_{10}(E/\text{GeV})$

<https://doi.org/10.3847/1538-4357/aad90c>

- \Box Anisotropy at all angular scales as a function of energy examined using 1.2×10^{12} events over 508 uninterrupted sidereal days measured with 294 WCDs.
- \Box Varying detector exposure accounted for using an iterative maximum-likelihood fitting technique.
- \Box Large-scale anisotropy evaluated using multipole fits to arrival direction maps.

Table

Reported Median Energy (With 68% Central Containment Region) and Fit of Two-dimensional Dipole Anisotropy (Amplitude and Phase)

for Each Independent Energy Bin

Phase

 42.9 ± 2.5

 52.2 ± 2.0

 $45\% \pm 1\%$

 39.5 ± 1.6

 41.3 ± 1.9

 44.5 ± 2.94

 36.0 ± 3.2

 31.9 ± 7.3

Amplitude

 $[x10^{-4}]$

 8.1 ± 0.4

 8.9 ± 0.3

 8.3 ± 0.3

 10.1 ± 0.3

 11.9 ± 0.4

 13.8 ± 0.6

 14.4 ± 0.8

 6.7 ± 0.9

Events

 4.0×10^{1}

 2.9×10^{10}

 2.4×10^{10}

 1.6×10^{10}

 7.9×10^9

 3.8×10^{9}

 1.8×10^{9}

 1.6×10^{9}

 \Box Small-scale anisotropy evaluated by subtracting Large-scale anisotropy (multipole fit for $l \leq 3$)

 $a_{1,1}$
[×10⁻⁴]

 -17.1 ± 1.0

 -15.9 ± 0.9

 -16.7 ± 0.7

 -22.7 ± 0.8

 -25.9 ± 1.1

 -28.4 ± 1.6

 -33.7 ± 2.3

 -16.4 ± 2.5

Energy

 (TeV)

 $2.0(\frac{-1.4}{+5.2})$

 $3.0(\frac{-2.1}{2.1})$

 $4.4\left(-\frac{3.2}{10.6}\right)$

 $6.8(\pm_{14.0}^{5.0})$

 $11.2\binom{-7.9}{+18.8}$

 $18.6(\frac{-12.7}{+25.6})$

 $30.3(\frac{-19.3}{+34.8})$

 $72.8(\frac{-44.9}{+106.7})$

Cosmic Ray Studies with the High-Altitude Water Cherenkov (HAWC) Observatory

 $a_{1,-1}$
[×10⁻⁴]

 -15.9 ± 1.0

 -20.5 ± 0.9

 -17.1 ± 0.7

 -18.7 ± 0.8

 -22.7 ± 1.1

 -27.9 ± 1.6

 -24.5 ± 2.3

 -10.2 ± 2.5

 $\chi^2/N_{\rm dof}$

13.34

1.24

0.79

0.85

0.81

1.07

1.25

1.03

Small-Scale Anisotropy Maps – A multipole fit with l<=3 has been removed

- \Box Significant cosmic-ray anisotropy observed on both large and small angular scales.
- \Box Energy estimation technique with good resolution and energy scale verified by Moon shadow deflection over the range of 2-78 TeV
- \Box Energy dependence of the large-scale phase and amplitude is consistent with other detectors in the northern hemisphere.
- \Box The morphology and relative intensity of the regions exhibiting small-scale regions of excess are also consistent with previous observations.
- \Box The techniques used for this analysis allow for the combination of HAWC data with other experiments such as IceCube….

Figure 12. Localized views of the relative intensity (top row) and significance (bottom row) of Regions A (left), B (center), and C (right) having combined all energy bins into a single map. The coordinates of the maximally significant pixels found for each region are presented in Table 2. The scales for the relative intensity and

Cosmic Ray Anisotropy – All Sky

https://doi.org/10.3847/1538-4357/aaf5cc

C 2019. The American Astronomical Society. All rights reserve All-sky Measurement of the Anisotropy of Cosmic Rays at 10 TeV and Mapping of the **Local Interstellar Magnetic Field** $\delta_{6h} = 0.0015$, $\delta_{0h} = 0$, $\delta_N = 0$ $10^{0.500\pi}$ 0.59π 2.00π 3.41π 4.00π expected dipole $(\ell = 1)$ 10^{-6} 10^{-7} 10^{-8} \tilde{c} 10^{-5} $=1$ (only) 10^{-10} $l = 3$ 10^{-11} Sum 10^{-1} -45 $45[°]$ $0[°]$ 90^o $\delta_{\rm max}$

THE ASTROPHYSICAL JOURNAL, 871:96 (15pp), 2019 January 20

Figure 9. Angular power spectrum as a function of sky coverage for $\ell = \{1, 2, \ldots\}$ 3, 4}. The horizontal axis indicates the maximum decl. δ_{max} , keeping $\delta_{\min} = -90^{\circ}$ for a dipole injected horizontally in direction δ_{6h} . The partial coverage of sky produces an artificial quadrupole and octupole that decrease in power with greater celestial coverage.

<https://iopscience.iop.org/article/10.3847/1538-4357/aaf5cc/pdf>

Figure 11. (A) Relative intensity of cosmic rays at 10 TeV median energy (Figures $4(A)$) and (B) corresponding small-scale anisotropy (Figure $5(A)$) in J2000 equatorial coordinates with color scale adjusted to emphasize features. The fit to the boundary between large-scale excess and deficit regions is shown as a black crossed curve. The magnetic equator from Zirnstein et al. (2016) is shown as a black curve, as is the plane containing the local interstellar medium magnetic field and velocity $(B-V)$ plane). The Galactic plane is shown as a red curve, and two nearby supernova remnants, Geminga and Vela, are shown for reference, as is Cygnus X-1, a black hole X-ray binary known to produce highenergy γ rays (Albert et al. 2007).

Cosmic Ray Anisotropy – All Sky

 -80

 -60

 -40

The fi cuts. statistics for HAWC. The rates are dominated by events with energies near the threshold of each detector. By imposing an artificial cut on low energies in the HAWC data, the detector response flattens as it becomes less dependent on the zenith angle. The statistics in HAWC with 300 tanks before cuts are comparable to 1 year of IceCube with 86 strings.

Figure 3. Median energy as a function of decl. for Monte Carlo simulations before and after applying energy cuts.

 -20

Dec^[°]

0

20

40

60

Cosmic Ray Anisotropy – All Sky

Figure 4. Mollweide projection sky maps of (A) relative intensity δI_a (Equation (2)) of cosmic rays at 10 TeV median energy and (B) corresponding signed statistical significance S_i (Equation (3)) of the deviation from the

Figure 5. (A) Relative intensity δI_{α} (Equation (2)) after subtracting the multipole fit from the large-scale map and (B) corresponding signed statistical

Note. The last two rows correspond to measurements of the large-scale anisotropy from this study. The R.A. measurement in the last row is obtained from the dipole vector, and the decl. is obtained from the $\ell = 2$ quadrupole component. The second to last column corresponds to the angular distance $\Delta \psi$ between the boundary fit and the various LIMF estimates. The last column gives the corresponding vertical dipole component under the assumption that the dipole is oriented toward the given decl. Error in parentheses for dipole and quadruple correspond to systematic uncertainties.

Cosmic Ray Accelerators

nature > nature astronomy > letters > article

<https://arxiv.org/abs/2103.06820>

Letter | Published: 11 March 2021

HAWC observations of the acceleration of veryhigh-energy cosmic rays in the Cygnus Cocoon

Cosmic rays with energies up to a few PeV are known to be accelerated within the Milky Way. Traditionally, it has been presumed that supernova remnants were the main source of very-high-energy cosmic rays but theoretically it is difficult to get protons to PeV energies and observationally there simply is no evidence to support the remnants as sources of hadrons with energies above a few tens of TeV. One possible source of protons with those energies is the Galactic Center region. Here we report observations of 1-100 TeV gamma rays coming from the 'Cygnus Cocoon', which is a superbubble surrounding a region of OB2 massive star formation. These gamma rays are likely produced by 10-1000 TeV freshly accelerated CRs originating from the enclosed star forming region Cygnus OB2. Hitherto it was not known that such regions could accelerate particles to these energies. The measured flux is likely originated by hadronic interactions. The spectral shape and the emission profile of the Cocoon changes from GeV to TeV energies, which reveals the transport of cosmic particles and historical activity in the superbubble

Energy Spectrum – hadronic modeling Energy Spectrum – leptonic modeling

Cosmic Ray Accelerators

HAWC J2227+610 and Its Association with G106.3+2.7, a New Potential Galactic PeVatron

Abstract

We present the detection of very-high-energy gamma-ray emission above 100 TeV from HAWC J2227+610 with the High-Altitude Water Cherenov Gamma-Ray Observatory (HAWC) observatory. Combining our observations with previously published results by the Very Energetic Radiation Imaging Telescope Array System (VERTIAS), we interpret the gamma-ray emission from HAWC J2227+610 as emission from protons with a lower limit in their cutoff energy of 800 TeV. The most likely source of the protons is the associated supernova remnant $G106.3+2.7$, making it a good candidate for a Galactic PeVatron. However, a purely leptonic origin of the observed emission cannot be excluded at this time.

Figure 1. Left: HAWC significance map of the region, large-scale view. There are no other significant gamma-ray sources nearby that could affect the measurement. The black frame marks the size of the region shown on the right. Right: molecular hydrogen column density around HAWC J2227+610. See Appendix B for more details. The pulsar position as well as the centroids of the VERITAS and Milagro sources have been marked. The gray contours show the 1σ , 2σ , and 3σ confidence regions for the HAWC source position. The pink contours show the 1.4 GHz continuum brightness temperature from the Canadian Galactic Plane Survey (Taylor et al. 2003) in 50 logarithmically spaced steps from 1 to 100 K. Both maps have been smoothed and interpolated for display

<https://iopscience.iop.org/article/10.3847/2041-8213/ab96cc/pdf>

- \Box Galactic Gamma-Ray sources may be PeVatrons – sources of cosmic rays
- \Box Spectrum of Gamma Rays may be of hadronic origin
- \Box Multimessenger observations of neutrinos from these objects may be possible with future upgrades

Even More Cosmic Ray-Related Studies with HAWC

Summary and Future Outlook

- \Box Many cosmic ray studies performed with conclusive results
- \Box Analysis techniques still being improved, most notably the incorporation of machine learning techniques improving energy estimation.
- \Box Several Articles in Development or under Collaboration Review
	- \Box "A measurement of the intensity spectrum of cosmic rays from 10¹³ to 10¹⁵ eV using HAWC." – Update due to better energy resolution and smaller systematics. In collaboration review
	- \Box "Cosmic Ray Composition dependent energy spectrum H, He and Heavy" Analysis in progress
	- \Box "Update on Cosmic Ray Anisotropies" Analysis in progress using 8 years of data and improved techniques and control of systematics (Energy Spectrum Anisotropy? Mass separation?) – Analysis in progress
	- \Box Solar physics studies –Magnetic Flux ropes, Analysis in progress
	- \Box Nearly Horizontal Muon Studies Flux vs Depth in nearby volcanoes, Temperature Dependence of Horizontal Muon Flux – Analysis in progress

The HAWC Collaboration

USA:

Pennsylvania State University University of Maryland Los Alamos National Laboratory University of Wisconsin University of Utah Univ. of California, Irvine University of New Hampshire University of New Mexico Michigan Technological University NASA/Goddard Space Flight Center Georgia Institute of Technology Colorado State University Michigan State University University of Rochester University of California Santa Cruz

Europe:

Max Planck Institute KernPhysik Heidelberg Krakow Nuclear Institute, Poland

Mexico:

Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) Universidad Nacional Autónoma de México (UNAM) Instituto de Física Instituto de Astronomía Instituto de Geofísica Instituto de Ciencias Nucleares Universidad Politécnica de Pachuca Benemérita Universidad Autónoma de Puebla Universidad Autónoma de Chiapas Universidad Autónoma del Estado de Hidalgo Universidad de Guadalajara Universidad Michoacana de San Nicolás de Hidalgo Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional Centro de Investigación en Computación - IPN

Central America:

University of Costa Rica

Cosmic Ray Studies with the High-Altitude Water Cherenkov (HAWC) Observatory

CONACT

References

- <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.063021>
- <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.063021>
- <https://doi.org/10.3847/1538-4357/aad90c>
- <https://iopscience.iop.org/article/10.3847/1538-4357/aaf5cc/pdf>
- \Box Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC <https://iopscience.iop.org/article/10.3847/1538-4357/ab2f7d>

Backup slides

EAS Reconstruction – Hit finding

TeV Astrophysics At The High Altitude Water Cherenkov Observatory 28 **Experiment of the Cherena Second Conservation**

EAS - Energy Reconstruction

 $log_{10}(E/TeV)$

EAS - Energy Reconstruction

Energy Estimator

Neural Net Estimator

- Energy deposited in detector.
- Fraction of ground energy landing in detector.
- Fraction of primary energy reaching the ground.

<http://adsabs.harvard.edu/abs/2017APS..APR.X4005M>

EAS- Arrival Direction Resolution (Crab Measured)

Galactic Results - Crab Observations & Spectrum

The spectrum of the Crab is fit to a function of the form $\phi(E) = \phi_0(E/E_0)^{-\alpha-\beta \ln(E/E_0)}$ The data is well fitted with values of $\alpha = 2.63 \pm 0.03$, β = 0.15 ± 0.03, and $\log_{10}(\phi_0 \text{ cm}^2 \text{ s TeV}) = -12.60 \pm 0.02$ when E_0 is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the systematic errors in this HAWC measurement is discussed and estimated to be ±50% in the photon flux between 1 and 37 TeV. Confirmation of the Crab flux serves to establish the HAWC instrument's sensitivity for surveys of the sky.

ApJ **843** [\(2017\), 39](http://stacks.iop.org/0004-637X/843/i=1/a=39).

TeV Astrophysics At The High Altitude Water Cherenkov Observatory 32

