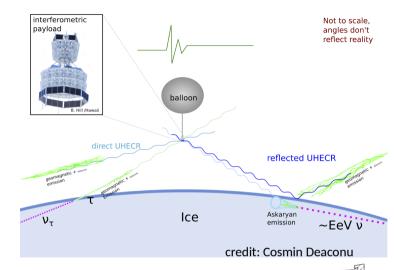
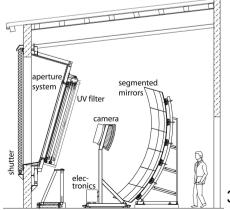


Hunting for new physics with upward-going air shower at the Pierre Auger Observatory

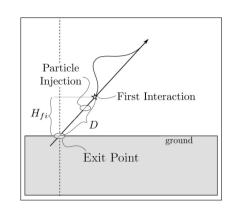

E. De Vito for the Pierre Auger Collaboration

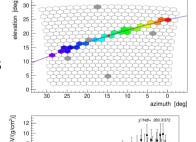
Outline

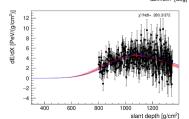
- Motivation: the ANITA anomalous events
- Search for upward-going showers with FD
- Comparison of Auger upper limits with ANITA observations
- Tau-induced air showers scenario
- Two simple BSM models

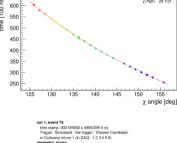

ANITA anomalous events

- Observation of two steeply upward-going air showers with non-inverted polarity, consistent with the direct detection of upward-going showers by ANITA^[1]
- E_{1.2} > 0.2 EeV
- zenith $\theta_1 \approx 117^\circ$ and $\theta_2 \approx 125^\circ$ (elevations 27° and 35°)
- Challenging to reconcile with Standard Model predictions

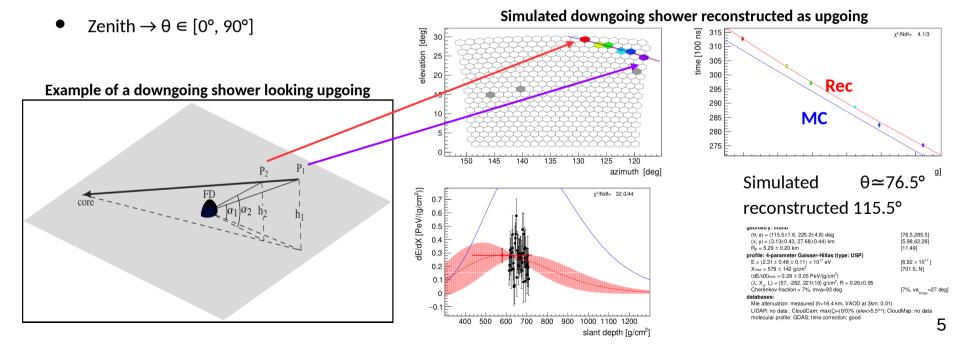

The Fluorescence Detector of the Pierre Auger Observatory is sensitive to upwardgoing air showers


> Simulate and reconstruct upward-going air-showers within the Offline framework to calculate the FD exposure to upward-going air showers

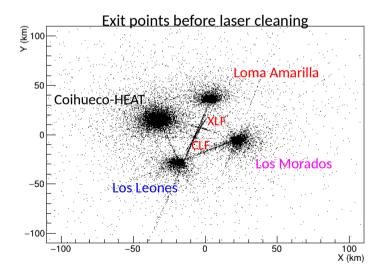


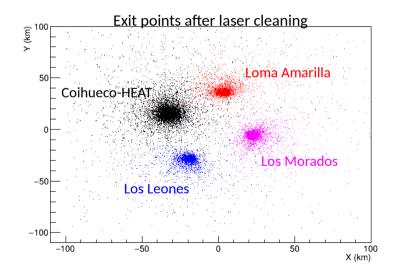

Signal simulations

- Actual status of all components of the FD detector and realistic atmospheric conditions taken into account in the simulation
- Primary protons, easily adaptable to other scenarios
- Energy $\rightarrow \log(E/eV) \in [16.5, 19]$, 2 x 10⁷ showers simulated with E⁻¹ spectrum
- Very important to calculate the FD detection efficiency with high precision below 10^{17.5} eV for the comparison with ANITA
 - O 4.5 x 10⁷ additional showers below 10^{17.5} eV
 - O more accurate exposure calculation at the lowest energies
- Zenith $\rightarrow \theta \in [110^{\circ}, 180^{\circ}]$ (elevation [20°, 90°])
- Generation area → 100 x 100 km²
- Height of first interaction \rightarrow [0, 9] km above ground



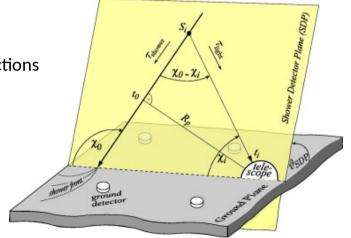
atabases:
Mile attenuation: model
LIDAR: no data; CloudCam: max(ζ)=(100/100)% (elev>5.5**); CloudMap: max=60
molecular profile: GDAS; time correction: good


Background simulations


- Downward-going Cosmic Rays can mimic upward-going track in the FD camera
- Primaries → protons + helium, nitrogen and iron nuclei, re-scaled to the CR spectrum
- Energy $\rightarrow \log(E/eV) \in [17, 20], 2.5 \times 10^8$ showers simulated

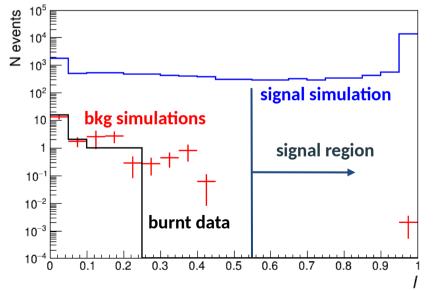
Data cleaning

- Blind analysis on 10% of FD data from 14 years of operations (2004-2018, 0.8 x 10⁶ events) to identify and remove untagged laser events used for atmospheric monitoring
- Pre-selection cuts applied on data and simulations requiring
 - O successful reconstruction and good atmospheric conditions
- Laser removed based on their specific GPS time tag and position inside the SD array


Reconstruction and event selection

- Data and simulations reconstructed with an iterative procedure combining the profile reconstruction with the geometry, testing upward (negative χ_0) and downward (positive χ_0) solutions
- Selection criteria requiring compact pattern of pixels in the FD camera, $\theta > 110^{\circ}$ and observed fraction of longitudinal profile > 80 g cm⁻²
- The likelihood of the combined fit, L_{down} and L_{up} , can be used to compare the two reconstructions

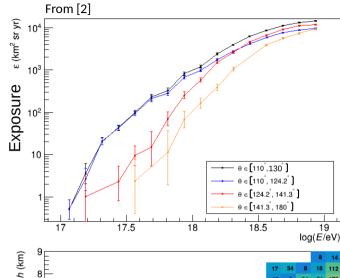
Definition of a new variable for the comparison of the two reconstructions

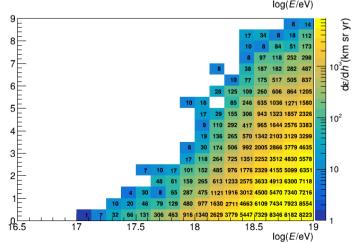

$$l = \frac{\arctan\left(-2\log\left(L_{down}/\max\left\{L_{down}, L_{up}\right\}\right)/50\right)}{\pi/2}$$

 $0 \le l \le 1$, if l = 0 downward favoured, if $l \to 1$ upward favoured

Expected background and signal identification

- Distribution of variable *l* for data (black, 10% of the total) signal simulations (blue) background simulations (red)
- Background weighted to CR spectrum and scaled to the burn sample fraction → good agreement with data
- Cut is at l > 0.55 with expected background for the full sample of $n_{bkg} = 0.27 \pm 0.12$

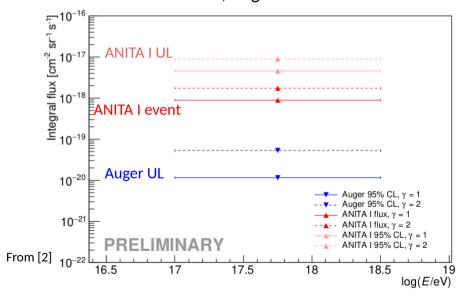

$$l = \frac{\arctan\left(-2\log\left(L_{\text{down}}/\max\left\{L_{\text{down}}, L_{\text{up}}\right\}\right)/50\right)}{\pi/2}$$

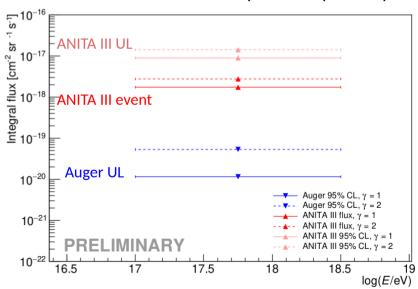

I = 0 downward favoured

 $I \rightarrow 1$ upward favoured

From [2]

Exposure and upper limits

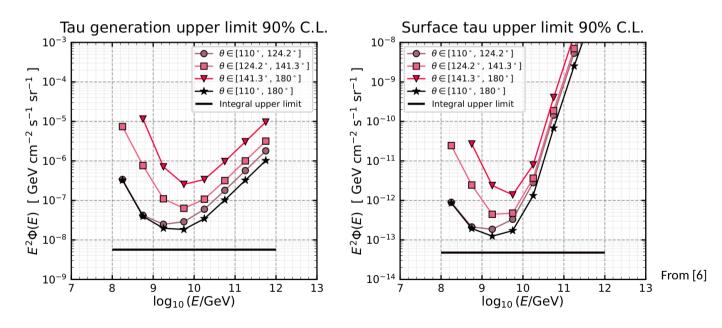




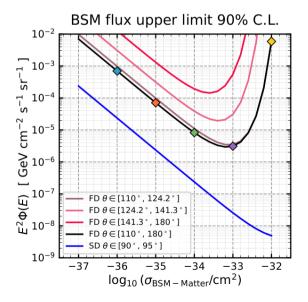
- One event found after the unblinding, consistent with expected background
- FD exposure as a function of the shower energy (top), calculated for different zenith sub-ranges
- Exposure as a function of the shower energy and the height of first interaction (bottom)
- Using Rolke^[3], the integral upper limit to the flux of upgoing showers above 10¹⁷ eV:
 - \rightarrow (7.2 ± 0.2)x10⁻²¹ cm⁻² s⁻¹ sr⁻¹ assuming a E⁻¹ spectrum
 - \rightarrow (3.6 ± 0.2)x10⁻²⁰ cm⁻² s⁻¹ sr⁻¹ assuming a E⁻² spectrum

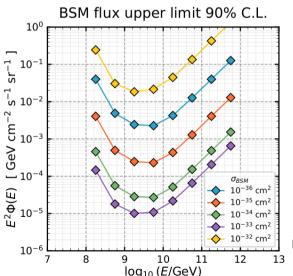
Comparison with ANITA observations


- Joint effort with members of the ANITA Collaboration to make an analytic calculation of ANITA exposure for the two anomalous events between 10¹⁷ eV and 10^{18.5} eV and $\theta \in [110^{\circ}, 130^{\circ}]$
- Comparison of Auger integral UL (blue) with ANITA flux (red) and ANITA UL (light red) for two spectral indices $\gamma = 1, 2$
- For both events, Auger limits are 100 and 30 times lower than ANITA for E⁻¹ and E⁻² spectra respectively


Tau-induced air showers

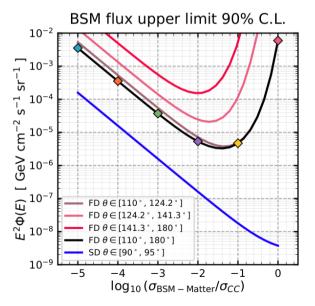
- Auger exposure obtained using protons, easily scalable to other particles (e.g. taus) by folding it with the corresponding FD detection efficiency
- Dedicated simulations of tau leptons generated within ~50 km below the Earth crust
- NuTauSim^[4] used for the propagation and TAUOLA^[5] used for decays
- Taus can propagate through the Earth crust and generate an air shower
- 3 and 5 are the most relevant cases where the shower develops in the atmosphere and can be observed with FD

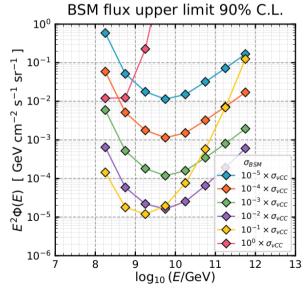

Tau-induced air showers


- Tau simulations used to calculate the FD detection efficiency and then folded with Auger exposure
- Tau upper limits considering all generated taus (left) or only those exiting the Earth (right)

The reduced cross section BSM model: first scenario

- At these energies, the Earth is opaque to neutrinos. On the other hand BSM particles could in principle produce tau leptons if their interaction cross section with matter is sufficiently low
- We study a model in which a BSM particle produces a tau-leptons which then generate an upward-going air shower as a function of the unknown particle cross section
- First scenario with a constant cross section at all energies


Strongest limits at $\sigma \sim 10^{-33} \text{ cm}^2$


Auger SD Earth-skimming upper limit shown in blue

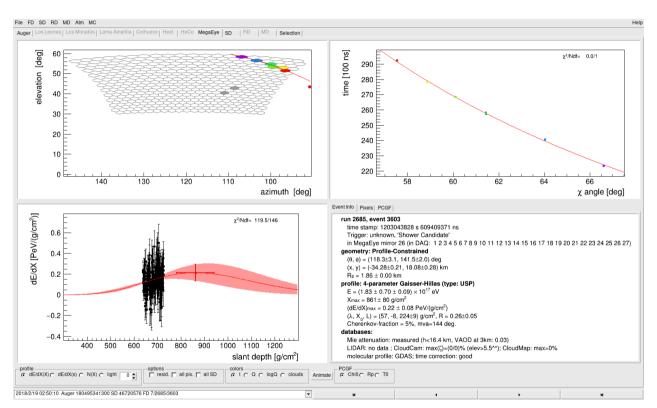
From [6]

The reduced cross section BSM model: second scenario

• Second scenario, the cross section mimics a charged current neutrino cross section scaled by a fixed factor (between 10⁻⁵ and 1)

Strongest limits if $\sigma_{\rm BSM}$ is 3% of neutrino charged current $\sigma_{\rm cc}$ Auger SD Earth-skimming upper limit shown in blue

From [6]


Summary

- Blind analysis searching for upward-going air showers with the Fluorescence Detector of the Pierre Auger
 Observatory
- One candidate found, consistent with the expected background
- Auger integral upper limit on the flux of upward-going air showers are found to be 100 and 30 times lower than the inferred ANITA fluxes in the case of a E⁻¹ and E⁻² spectrum for both ANITA I and ANITA III observations
- Upper limits converted to the case of a tau-induced air shower
- We have tested two possible scenarios of BSM particles of unknown cross section producing a tau-lepton

Thank you for your attention!

Backup slides

The "candidate"

Few pixels at the border of the FD camera

 $\theta \simeq 118^{\circ}$

Short profile

Core is behind the FD telescope