

13th Cosmic-Ray International Studies and Multi-messenger Astroparticle Conference

PULSAR TIMING ARRAYS AND THE DETECTION OF ULTRA-LONG PERIOD GRAVITATIONAL WAVES

TRAPANI – 21 JUNE 2024

PTAs @ CRIS-MAC 2024

What is a pulsar

A <u>PULSAR</u> is a rapidly rotating and highly magnetized neutron star, emitting a pulsed radio signal as a consequence of a light-house effect

PTAS @ CRIS-MAC 2024

ANDREA POSSENTI

TRAPANI – 21 JUNE 2024

The procedure of "timing"

Performing repeated observations of the Times of Arrival (ToAs) at the telescope of the pulsations from <u>a given pulsar</u> and

searching the ToAs for systematic trends on many different timescales, from minutes to decades

Which pulsars are suitable ?

PTAs @ CRIS-MAC 2024

Why observing the "recycled" pulsars can be so effective ?

Pulsar periods can sometimes be measured with unrivalled precision

e.g. on Jan 16, 1999, PSR J0437-4715 had a period of

5.757451831072007 ± 0.000000000000008 ms

16 significant digits!

Several rapidly spinning pulsars can be used as clocks in the space-time

PTAs @ CRIS-MAC 2024

ANDREA POSSENTI

TRAPANI – 21 JUNE 2024

Pulsars as GW detectors

The Pulsar-Earth path can be used as the arm of a huge cosmic gravitational wave detector

Perturbation in space-time can be detected in timing residuals over a suitable long observation time span

Radio Pulsar

Sensitivity (rule of thumb):

Where: $h_c(f)$ is the dimensionless strain at GW frequency f σ_{ToA} is the rms uncertainty in Time of Arrival of the pulses T is the duration of the data span

ANDREA POSSENTI

Farth

Source of

GWs

The theoretical "clean" signals in the Residuals for various kinds of sources

<u>Upper panels</u>: trends without fitting for P and dP/dt <u>Lower panels</u>: trends after fitting for P and Pd/dt

for 3 reference pulsars:

PSR J0437-4715 PSR J1012+5307 PSR J1713+0747

An instructive application (using 1 pulsar)

The radio galaxy 3C66 (at z = 0.02) was claimed to harbour a double SMBH with a total mass of 5.4 \cdot 10¹⁰ M_{sun} and an orbital period of order ~yr

[Sudou et al 2003]

Timing residuals from PSR B1855+09 excluded such a massive double BH at 95 c.l.

A pulsar timing array (PTA)

Using a number of pulsars distributed across the sky it is possible to separate the timing noise contribution from each pulsar from the signature of the GW background, which manifests as a local (at Earth) distortion in the times of arrival of the pulses which is common to the signal from all pulsars

Searching for a GW background using 2+ pulsars

Idea first discussed by Romani [1989] and Foster & Backer [1990]

Pulsar

Clock errors

slide adapted from Manchester 11

All pulsars have the same TOA variations: Monopole signature

- Solar-System ephemeris errors <u>Dipole</u> signature
- Gravitational waves background Quadrupole signature

$$\zeta(\theta_{ab}) = \frac{3}{2} \left(\frac{1 - \cos \theta_{ab}}{2}\right) \log\left(\frac{1 - \cos \theta_{ab}}{2}\right) - \frac{1}{4} \left(\frac{1 - \cos \theta_{ab}}{2}\right) + \frac{1}{2} + \frac{1}{2} \delta_{ab}$$

Pulsar b

Pulsar Timing Array(s): the frequency space

Note the complementarity in explored frequencies with respect to the current and the future GW observatories, like advLIGO, advVIRGO and eLISA

The GW background due to Super Massive Black-Hole Binaries (SMBHBs)

It's well known that current paradigm is that [e.g. Ferrarese & Merrit 2000]

- mergers are an essential part in galaxy formation and evolution
- nuclei of most (all?) large galaxies host Massive BH(s) i.e. mass $M \gtrsim 10^6 M_{\odot}$

When reaching orbital separation *a* of less than about 1 pc, GW emission at frequency *f* become the dominant term in energy loss, making the MBH binary to shrink faster and faster

$$f \sim 3 \text{ nHz} \left[\frac{M}{10^9 M_{\odot}}\right]^{1/2} \left[\frac{a}{0,01 \text{ pc}}\right]^{-3/2}$$

The expected **Power Spectrum** of the GWB

In the simplest picture, the corresponding Power Spectrum from the ensemble of these MBH binaries (supposed to be isotropic and stochastic) is

e.g. Detweiler1979; Jenet et al. 2005, 2006]

$$P_{GWB}(f) \sim f^{-2\alpha-3} = f^{-13/3}$$
 for $\alpha = 2/3$

This is a very steep RED power spectrum for GWB

That must be disentangled from the RED noise affecting the Power Spectrum of the timing residuals of few recycled pulsars: that can be caused by turbulent ionised interstellar medium, spin noise, instrumentation issues, incorrect planetary ephemeris (EPH), incorrect time standards (CLK), gravitational waves (GW) or unknown effects

See [Chalumeau et al 2022] for a complete analysis of the noises in EPTA data

PPTA: Parkes Pulsar Timing Array (since 2004)

Adapted from Caterina Tiburzi 2019

NANOGrav: North American Array (since ~2008)

Adapted from Caterina Tiburzi 2019

InPTA: Indian Pulsar Timing Array (since 2016) **CPTA: Chinese Pulsar Timing Array** (last ~5 years)

Adapted from Caterina Tiburzi 2019

EPTA: European Pulsar Timing Array (formally since 2006, but data from 1998)

Adapted from Caterina Tiburzi 2019

IPTA: International Pulsar Timing Array

Italian Assets

Sardinia Radio Telescope: SRT

- Fully steerable, wheel-and-track radio telescope
- > Frequency coverage: 0.3 115 GHz (almost continuously):

> dual band 300-400 MHz 1300-1800 MHz receiver

- > 5.5-7.5 GHz receiver
- ≻7 beam 18-26 GHz receiver
- >19 beam 33-50 GHz receiver
- >Tri-band for VLBI receiver
- >9 beam 75-116 GHz receiver
- > 80-116 GHz bolometer
- Primary mirror : 64 m
- Quasi-Gregorian system with shaped surfaces
- Active optics: 1116 actuators
- 6 focal positions (up to 20 receivers): Primary, Gregorian, 4 Beam Wave Guide
- Frequency Agility

 Coherently De-dispersing Backend(s) operating in Baseband mode

ANDREA POSSENTI

PTAS @ CRIS-MAC 2024

TRAPANI – 21 JUNE 2024

The earlier results (2015-16): upper limits only

best limits on data until \approx 2013 for the amplitude of the GW background from SMBH binaries [assuming a GWB spectral index $\alpha = -2/3$ at f_{GW}=2.8 nHz (i.e. P_{GW}=1 yr) and for H_o = 73 km s⁻¹ Mpc⁻¹]

[Lentati et al 15

PTAS @ CRIS-MAC 2024

Last results (2023)

... the expected space quadrupolar correlation among pulsar-pairs residuals due to a stochastic, isotropic, unpolarized, stationary GW background ...

Last results (2023)

... what observed by EPTA with 10.3 or 24.7 years of data ...

** With the full data set, we find marginal evidence for a GWB, with a Bayes factor of 4 and a false alarm probability of 4%.

Last results (2023)

... what observed by EPTA with 10.3 or 24.7 years of data ...

** for the last 10.3 yr of data, the index of the GW spectrum is compatible, but tendentially less steep then the expected 13/3=4.3 value for a GW Background due to SMBH binaries

PTAs @ CRIS-MAC 2024

Last results (2023) ... what also observed by the other experiments ...

PTAs @ CRIS-MAC 2024 2023]

Andrea Possenti

2.0 × 10⁻¹⁵

TRAPANI – 21 JUNE 2024

Implications

The origin of the observed signal is still unassessed at the current stage:

1) a cosmic population of in-spiralling supermassive black hole binaries (SMBHBs)

strong indications that the signal is compatible with a cosmic population of SMBHBs coalescing in the aftermath of galaxy mergers. The relatively flat slope of the measured spectrum might be indicative of strong environmental coupling and high eccentricities

PTAs @ CRIS-MAC 2024

Andrea Possenti

[Antoniadis+ Jun 2023-V

Implications [Antoniadis+ Jun 2023-V

The origin of the observed signal is still unassessed at the current stage:

2) inflation, phase transitions, cosmic strings and tensor mode generation by non-linear evolution of scalar perturbations in the early Universe

* inflationary origin of the GWB requires non-standard inflationary evolution leading to a blue-tilted spectrum

* string origin (BOS and LRS) would allow narrowing down the string tension to values of $-11 \leq \log_{10}G\mu \leq -9.5$

* GWB induced by MHD turbulence at the QCD energy scale requires either high turbulent energy densities or a turbulent scale close to the horizon at the QCD epoch

* evolution of scalar perturbations at second order only if an excess of their primordial spectrum is present at large wavenumbers

3) oscillations of the Galactic potential in the presence of ultra-light dark matter (ULDM)

if a joint ULDM+GWB search is performed, the <u>data</u> <u>strongly prefer the presence of an HD correlation</u> in the common power

* only about 80% of the DM density in the solar neighbourhood can be attributed to ULDM with $-24 < \log (m/eV) < -23$

```
[ see also Smarra+ 2023 ]
```

PTAS @ CRIS-MAC 2024

Andrea Possenti

Additional PTA experiments

Meerkat

SKA observatory PTAs @ CRIS-MAC 2024

ANDREA POSSENTI

TRAPANI – 21 JUNE 2024

MPTA: Meerkat Pulsar Timing Array (since 2018)

The future pulsar science perspectives with SKAO

130,000 dipoles (512 stations x 256 antennas); 50-350 MHz ~80km baselines; large areal concentration in core

SKA1-LOW, Murchison, Australia:

SKA1-MID, Karoo, South Africa: 133 SKA1 + 64 MeerKAT dishes. Max baseline ~150km Bands: 2 (0.95-1.76 GHz), 5 (4.6-14(24) GHz), 1 (0.35-1.1 GHz)

PTAs @ CRIS-MAC 2024

