Gravitational wave observations with LIGO, Virgo and KAGRA: status and prospects

Barbara Patricelli^{1,2,3}

on behalf of the LIGO-Virgo-KAGRA (LVK) Collaboration

 1 Physics Department - University of Pisa 2 INFN - Sezione di Pisa

INAF - Osservatorio Astronomico di Roma

CRIS-MAC 2024

Trapani, Italy June 17 - 21, 2024

500

Outline

Introduction

2 The first three observing runs

- Some notable events
- Population properties

The fourth observing run O4a

• O4b

Prospects and Conclusions

Introduction

he first three observing runs The fourth observing run Prospects and Conclusions

The 2nd generation GW detector network

Introduction

The first three observing runs The fourth observing run Prospects and Conclusions

Where do we stand?

Credit: LIGO-Virgo-KAGRA

- *O1: September 2015 January 2016 LIGO operating*
- O2: November 2016 August 2017 Virgo joined the network on August 1
- O3a: April 2019 September 2019
 O3b: November 2019 March 2020
 Virgo and LIGO operating
- O4a: May 2023 January 2024
 LIGO operating; KAGRA operating for 1 month
- O4b: April 2024 now

LIGO and Virgo operating; KAGRA expected to join before the end of the run

Some notable events Population properties

GW detections: 01+02+03 summary

Credits: LIGO-Virgo-KAGRA Collaborations/Hannah Middleton/OzGrav

Some notable events Population properties

GW detections: 01+02+03 summary

- Total number of candidates: 90
- Most are binary black holes (BBHs); some are neutron star black hole (NSBH) binaries; two
 are binary neutron stars (BNSs)
- Four GW catalogs: GWTC-1 (01+02), GWTC-2 and GWTC-2.1 (O3a), GWTC-3 (O3b)

LVK Collaboration 2019, PRX, 9, 031040; LVK Collaboration 2021, PRX, 11, 021053; LVK Collaboration 2023, PRX, 13, 041039; LVK Collaboration 2024, PRD, 109, 022001

ome notable events Population properties

The model

GW150914: the birth of GW astronomy

The observation

- BBHs can form in nature and merge within the age of the Universe
- The two BH masses are $\sim 30~M_{\odot} \Rightarrow$ First direct evidences for "heavy" stellar mass BHs ($>25~M_{\odot})$

LVC 2016, PRL, 116, 061102

GW170817: the beginning of multi-messenger astronomy with GWs

- GW170817: first observation of a binary neutron star inspiral
- coincident short GRBs detected in γ rays
 ⇒ first direct evidence that at least some
 BNS mergers are progenitors of short GRBs
- identification of the host galaxy: NGC 4993
 ⇒ new, independent estimate of the Hubble constant
- an optical/infrared/UV counterpart has been detected

 \Rightarrow first spectroscopic identification of a kilonova

• An X-ray and a radio counterparts have been identified

 \Rightarrow GRB afterglow from a structured jet seen off-axis (Ghirlanda et al. 2019, Mooley et al. 2018)

see LVC 2017, ApJ Letters, 848, 2 and refs. therein

Some notable events Population properties

GW190814: lower mass gap

- GW event observed by the two LIGO detectors and Virgo
- $m_1: 23.2^{+1.1}_{-1.0} \ M_{\odot}$
- m₂: 2.59^{+0.08}_{-0.09} M_{\odot} \Rightarrow BBH or NS-BH?

LVC 2020, ApJL, 896, 44

Some notable events Population properties

GW190521: upper mass gap

- GW event observed by the two LIGO detectors and Virgo
- m1: 85^{+21}_{-14} M_{\odot}, m2: 66^{+17}_{-18} M_{\odot}
- The primary falls in the mass gap by (pulsational) pair-instability SN

Challenge for stellar evolution

- Isolated binary evolution is disfavoured
- Dynamical scenario? e.g., hierarchical mergers in an AGN disk

LVC 2020, PRL, 125, 101102 LVC Collaboration 2020, ApJL, 900, 13

Some notable events Population properties

GW190521: an EM counterpart?

The Zwicky Transient Facility (ZTF) detected a candidate optical counterpart in AGN J124942.3+344929

- GW sky localization: 765 deg² (90% C.R.)
- ZTF observed 48% of the 90%
 C.R. of the GW skymap
- An EM flare observed \sim 34 days after the GW event
- It is consistent with expectations for a BBH merger in the accretion disk of an AGN (see McKernan et al. 2019, ApJL, 884, 50)

Graham et al. 2020, PRL, 124, 251102

Common origin of the two transients seems to be preferred with respect to random coincidence (Morton et al. 2023; see, however, Ashton et al. 2021, Palmese et al. 2021)

Some notable events Population properties

GW190521: the birth on a intermediate massive BH

The remnant BH mass is \sim 142 M_{\odot} \Rightarrow First strong observational evidence for an intermediate-mass BH: the missing link between stellar and supermassive BHs

Some notable events Population properties

The astrophysical population of NSs

(u) (u)

The mass distribution of NSs

- The mass distribution of NSs observed in GWs is broader and has greater support for high-mass NSs with respect to the Galactic population
- Difference could result from:
 - distinct formation channels;
 - strong selection effects;
 - overlap of NS and BH mass distributions

LVK Collaboration 2023, PRX, 13, 011048

Some notable events Population properties

The population of BBH merging systems

Primary BH mass distribution

• BH mass distribution is non-uniform, with overdensities at BH masses of 10 M_{\odot} and 35 $M_{\odot};$ tail up to 80 M_{\odot}

BBH merger rate

• BBH merger rate is observed to increase with redshift

LVK Collaboration 2023, PRX, 13, 011048; LVC 2021, ApJL, 913, L7

ome notable events Population properties

Astrophysical implications: the merger rates

01+02+03:

- BBH merger rate (z=0.2): 17.3 45 Gpc⁻³ yr⁻¹
- BNS merger rate: 13 1900 Gpc^{-3} yr $^{-1}$
- NS-BH merger rate: 7.4 320 $\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$

LVK Collaboration 2023, PRX, 13, 011048

\rightarrow Helpful to constrain population synthesis models

O4a O4b

O4a: summary

- $\bullet~\sim$ 8 months of data taking
- LIGO detectors running with:
 - sensitivity of 120-160 Mpc (H1) and 140-160 Mpc (L1)
 - duty cycles of $\sim 70\%$
- 81 significant^a detection candidates (92 Total - 11 Retracted)
- Almost all BBHs; no BNS; a couple of possible NS-BHs
 - S230627c GraceDB
 - GW230529

 $^a {\rm Significant}$ GW alerts: false alarm rate $< 1/{\rm month}$ for CBC and $1/{\rm year}$ for bursts

O4a O4b

GW230529

- Single-detector signal found by LIGO Livingston
- Primary: (2.5 4.5) M_☉; Secondary: (1.2 - 2.0) M_☉
- Most probable interpretation: merger of a NS with a BH with mass in the "lower mass gap" (3 - 5 M_☉)
- GW230529 data release

LVK Collaboration 2024, arXiv:2404.04248

O4a O4b

GW230529

- Significantly more symmetric than other NSBHs
- More symmetric masses → more susceptible to tidal disruption ⇒ EM counterpart
- 90 % C.R. $\sim 2\times 10^4~{\rm deg^2}$
- $D_{\rm L} = 201^{+102}_{-96}$ Mpc
- No EM counterpart reported so far

LVK Collaboration 2023, GCN 34148 LVK Collaboration 2024, arXiv:2404.04248

O4a 04b

GW230529: the merger rate

NSBH merger rate updated using two different methods:

- GW230529 is representative of its own class of event (event-based)
- GW230529, GW200105, GW200115, and less-significant triggers treated as one source class (population-based)

Event-based: GW230529-like systems merge at a similar (or even higher) rate to the more asymmetric NSBHs identified so far

LVK Collaboration 2024, arXiv:2404.04248

O4b: summary

- The two LIGO detectors are now running with a sensitivity of 140-180 Mpc, and with duty cycles of 60-75\%
- $\bullet\,$ Virgo is running with a sensitivity of 50-55 Mpc, and with duty cycle of $\sim\,80\%$
- O4b Significant Detection Candidates*:

27 (30 Total - 3 Retracted); No BNS so far; 1 NSBH

• Virgo can have a significant impact on network localization capabilities

Example:

- S240615dg
- BBH
- Luminosity Distance: 1420 ± 236 Mpc
- GraceDB
- GCNs: 36669 and 36704

* Updated on June 21, 2024 at 23:00 CEST

Current and next GW observing runs

- O4b will run until June 9, 2025
- KAGRA will possibly join the network by the end of the run
- A fifth observing run (O5) is planned to start in a few years

Updated observing run plans at https://observing.docs.ligo.org/plan/

In the future $2^{\rm nd}$ generation GW detectors will operate with high sensitivity, in synergy with current and future EM facilities (e.g. SVOM, CTA, Vera Rubin Observatory etc)

Many other GW and multi-messenger discoveries are expected in the near future... stay tuned!

Backup

Backup Slides

22 / 30

GW190814: the EM follow-up

Example: optical counterpart searches by ENGRAVE

ENGRAVE - Electromagnetic counterparts of gravitational wave sources at the Very Large Telescope

No EM counterpart has been observed

Ackley et al. 2020, A&A, 643, 113

Multi-messenger facilities in the next years

Radio: SKA						
Radio: CHIME						
Neutrino: KM3NeT						
IceCube IceCube-Upgrade	Neutrino:					
		length: SVOM	Multiwave	(
			velength: Swift	Multiwa		
			na-rays: Fermi	Gamr		
γ-rays: CTA						
γ-rays: HESS						
γ-rays: MAGIC						
X-rays: XMM-Newton						
X-rays: ATHENA						
Optical/NIR: VLT/LSST						
IR: JWST						
GW: ET, CE						
GW: Indigo						
GW: Advanced Virgo/Advanced LIGO/KAGRA						
2032 2034	2030)26	2024 20	2022		

Cuoco, Patricelli et al. 2022, Nat Comput Sci 2, 479

GW-NGC4993 association: implications for Cosmology

GW170817 as a standard siren:

the association with the host galaxy NGC 4993 and the luminosity distance directly measured from the GW signal have been used to determine the **Hubble constant**

^{*} More recent estimates, obtained assuming a priori that the GW source is in NGC 4993, are:

- $H_0 = 70^{+13}_{-7} \text{ km s}^{-1} \text{ Mpc}^{-1}$ (high-spin case)

-
$$H_0 = 70^{+19}_{-8}$$
 km s⁻¹ Mpc⁻¹ (low-spin case)

LVK Collaboration 2019, PRX, 9, 011001

Hubble constant estimate with GWTC-3

BBHs + galaxy catalogs + GW170817: $H_0 = 68^{+8}_{-6}$ km s⁻¹ Mpc⁻¹ \Rightarrow improvement of ~ 40 % with respect to the result obtained using only GW170817 LVK Collaboration 2023, ApJ, 949, 76

GW190425: the second BNS merger

- GW event observed by LIGO-Livingston and Virgo
- The total mass is significantly larger than that of the other BNS systems...
 - ... different formation channel?

- 90 % C.R.: 8284 deg²; $D_L = 159^{+69}_{-72}$ Mpc
- No EM counterpart (see, e.g., Hosseinzadeh et al. 2019)

LVC 2020, ApJL, 892, 3

GW200105 and GW200115

	m ₁	m ₂	D_L	90 % C.R.
GW200105*	$8.9^{+1.2}_{-1.5}~{ m M}_{\odot}$	$1.9^{+0.3}_{-0.2}~{ m M}_{\odot}$	280^{+110}_{-110} Mpc	7200 deg^2
GW200115	$5.7^{+1.8}_{-2.1}~{ m M}_{\odot}$	$1.5^{+0.7}_{-0.3}~{ m M}_{\odot}$	$300^{+150}_{-100}~{ m Mpc}$	600 deg ²

- No EM counterpart has been found...
- ... However, EM emission would have been difficult to detect, given the large distances and large error in the sky localization

LVK Collaboration 2021, ApJL, 915, L5

 * In the GWTC-3 analysis, GW200105 is found to have $p_{\rm astro}$ <0.5, but it remains a candidate of interest (Abbott et al. 2023, PRX, 13, 041039

O4a: detector status

Individual duty cycle:

- LIGO-Hanford: 67.5 %
- LIGO-Livingston: 69.0 %

https://gwosc.org/detector_status/04a/

S240422ed

- NSBH (> 99 %)
- HasRemnant* > 99 %
- Luminosity Distance: (188 \pm 43) Mpc
- GraceDB
- GCNs: 36236 and 36240
- No confirmed EM counterpart so far

* Probability of having a non-zero amount of NS material outside the final remnant compact object