Machine Learning Applications at the **Pierre Auger Observatory**

Margita Kubátová* on behalf of the Pierre Auger Collaboration *Institute of Physics of the Czech Academy of Sciences

Surface detector (SD)

- Grid of 1660 water-Cherenkov detectors.
- AugerPrime upgrade:
 - New electronics
 - Scinillation detectors (SSD)
- ML methods use the spatial and temporal information contained in the shower footprint that is measured by the SD stations.

19.5

20.0

• Goal: Mass composition from SD.

Energy Estimator for the Surface Detector [1]

CNNs are used to reconstruct the energy of the impinging cosmic ray.

• Composition bias is reduced when compared to standard techniques.

Mass Composition [2]

The depth of the maximum of airshower profiles, X_{max} is estimated with the combination of CNNs and LSTMs.

• Offset of $\sim 31 \text{ g/cm}^2$ between the SD and FD reconstruction due to mismatches between data and simulation, removed by calibration with FD data.

Using upgraded SD stations [3]

 X_{\max} and the number of muons R_{μ} in the air shower are estimated using simulations for the upgraded stations of the SD.

• Improvement in resolution (~10% for R_{μ} and ~4% for X_{max}) for WCD + SSD.

- There is a clear transition from a lighter to heavier composition.
- Indication for 3 breaks in the elongation rate close to the energy spectrum features.

• Proton-Iron ROC curves show improvement for WCD+SSD.

Pierre Auger Collaboration

[1] F. Ellwanger. PoS ICRC2023 (2023) 275. [2] J. Glombitza. PoS ICRC2023 (2023) 278. [3] N. Langner. PoS ICRC2023 (2023) 371.