The Detector Design of the Southern Wide-Field Gamma-Ray Observatory

Science Benchmarks & Performance Requirements

Design Drivers

- Southern Sky
- Energy Range
- Background Rejection

Detector Options – R&D

- Mechanics
- Photosensors
- Electronics

Design Constraints & Considerations

- Cost
- Risk
- Mitigation

Detector Deployment & Operation

- Design Consolidation
- Construction
- Analysis, Calibration and Validation

J Summary

Wayne Springer Department of Physics & Astronomy University of Utah Salt Lake City, Utah, USA On Behalf of the <u>SWGO Collaboration</u>

SWGO Science Cases – Design Drivers & Benchmarks

Relative Intensity [10⁻³]

Equatoria

Science Case	Design Drivers	Benchmark Description	10-9 Continuous injection
Transient Sources:	Low-energy sensitivity &	Minimum integrated flux (E >100 GeV)	A recent burst
Gamma-ray Bursts	Site altitude ^a	for 5σ detection using a PWL index =	is 10-10
		-2., F(t) $\propto (t/t_{peak})^{-1.2}$ two redshift val-	B
		ues (z = 0.3, z = 0.8), 20° from zenith	
Galactic Accelerators:	High-energy sensitivity &	Flux normalisation at 1 TeV in 5 yr,	θ 10 ⁻¹² HAWC Fermi 4FGL
PeVatron Sources	Energy resolution ^b	ensuring 5σ cutoff detection, for:	+ Fermi -LAT Coll. (2011) Aharonian et. al. (2019)
		ECPL Index = -2.0, Cutoff = 200 TeV	10 ⁻¹³ ARGO
Galactic Accelerators:	Extended source sensitivity &	Maximum source angular extension de-	$E_{\rm c}({\rm eV})$
PWNe and TeV Halos	Angular resolution ^c	tectable at 5σ in 5-yr integration for:	
		$F(>1TeV) = 5 \times 10^{-13} \text{ cm}^{-2} \text{.s}^{-1}$	Germanay emissions
Galactic Accelerators:	Angular resolution	Minimum angular separation detectable	X ray emissions.
Source Confusion		between two sources at 5σ level in 5-yr	Milky Way - 50.000 kpte years
		integration.	
Diffuse Emission:	Background rejection	Achievable background rejection power	-Sun
Fermi Bubbles		at 3 - 10 TeV whilst keeping 80% of	
		gamma-rays that remain after quality	
		cuts.	b Annihilation Limits in the Galactic Halo
Fundamental Physics:	Mid-range energy sensitivity	100 TeV <i>bb</i> thermal-relic cross-section	10-22
Dark Matter from Galactic Halo	Site latitude ^d	limit at 95% CL in 5-years, for Einasto	10-23
		profile.	
Cosmic-rays:	CR mass-group sensitivity	Muon counting accuracy to enable log-	₹ <u>10-24</u>
Mass-resolved dipole/multipole		mass CR reconstruction accuracy into	2
anisotropy		4 groups A={1, 4, 14, 56}; Maximum	10 ⁻²⁵ HAWC GC, Einasto Profile, This Work HAWC GC, Einasto Profile, Previous Results
		dipole energy at 10 ⁻³ level; Maximum	HAWC M31 HESS 2016
		multipole scale > 0.1 PeV	10 ¹ M _X [TeV]

10

SWGO Science Performance Requirements

- Wide Instantaneous Field-of-view of the Southern Sky (including GC)
- Continuous Monitoring with minimal downtime
- Low Energy Threshold for Transient Monitoring
- Excellent Differential Point-Source Sensitivity
- Extended Source sensitivity

Good Measurement	of	Enerav	&	Arrival	Direction
	•••		~	/	

- Energy resolution better that 20% which improves with energy
- Sub-degree (<0.3^o) angular resolution which improves with energy
- Excellent Background rejection via Gamma-Hadron Separation
 - Ability to detect Shower "Clumpiness"
 - Muon Tagging/Counting with single WCDs

	IACT Arrays	Ground-particle Arrays
Field of view	3°–10°	90°
Duty cycle	10% - 30%	>95%
Energy range	30 GeV - >100 TeV	$\sim 500~{ m GeV} - > 100~{ m TeV}$
Angular resolution	$0.05^{\circ}-0.02^{\circ}$	$0.4^{\circ}-0.1^{\circ}$
Energy resolution	$\sim 7\%$	60%-20%
Background rejection	>95%	90%-99.8%

Design Principles - Water Cherenkov Detector Surface Array

Design Driver – View Southern Sky – High Altitude Candidate Sites

- **Candidate sites in Argentina, Chile & Peru**
- □ Latitudes 14⁰ S 24⁰ S
- Altitudes 4450 m 4800 m

Exposure at 25 S latitude https://arxiv.org/pdf/1902.08429

Country	Site Name
Argentina	Alto Tocomar
	Cerro Vecar
Chile	Pajonales
	Pampa La Bola
Peru	Imata
	Sibinacocha
	Yanque

Alto Tocomar, Argentina – 4450 m

Design Driver – High Altitude 🗲 Lower Energy Threshold

Design Driver – Large Area → High Energy (>PeV) Sensitivity

The Detector Design of the Southern Wide-Field Gamma-Ray Observatory

The Southern Wide-field

Gamma-ray Observatory

WCD Unit Design Configuration

- **Unit Configurations with varying diameter, height, compartmentalization, photosensor deployment**
- □ Smallest Dimension < 2.6 m? "Easily" Realizable in Plastic
- □ Larger → Special Transport Permits
- ☐ "Mercedes" → Plastic Tank with 3 Photosensors at wall

Optimization of Detector Unit & Array Configuration

The "baseline" detector- array and unit configuration

The "baseline" detector concept - Sensitivity/Angular Resolution

SWGO WCD Deployment Options

- □ Several water containment options. Tanks, Pond and Lake.
- □ Significant Experience with both steel (HAWC) and plastic (Auger) tanks.
- □ Pond/Lake options eliminate container costs...not as much experience at scale.
- □ Plastic tanks more easily deployed but limited in size due to transport issues.
- □ Bladder film and construction developed for use in all options.

Plastic Tank Option – "Mercedes"

- □ Shallow, 3 or 4 PMTS
- □ Working with industry
- □ Roto-molded
- □ Thermal insulation integrated
- Reduced water requirement
- □ Possible Fabrication "nearby"

SWGO Steel Tank Option

- Fabricated from Galvanized Steel Panels
- **Larger Dimensions possible**
- "Compact" Shipping transportable via road
- □ Water contained in bladder
 - Single/Double Compartment
 - White (Tyvek)/Black Walls

3.6 m diameter – 4.3 m height

(credit Michael Schneider - UMD)

5.2 m diameter – 4.3 m height

Bladders

- Water-Tight
- Light-Tight
- Does not contaminate water
- Lower Chamber Tyvek used to reflect photons
- □ Upper Chamber non-reflective to improve timing
- □ Working with industrial partners
- □ film development
- Fabrication

Double chamber

Top down inside view with double chamber

Double-PMT Mechanics

Photosensors need to be positioned to view the upper and lower chambers. Weights to balance and reduce buoyancy as well as positioning and surveying mechanisms are being developed. Shown here is an MPIK design to hold an 8" downward-looking and 10" upward-looking PMT. This particular design would be supported from above.

Fig. 1 Prototype double-PMT mechanics developed at MPIK. Due to the modular approach PMTs of different diameters can be combined. Weights are attached to the bottom to make the assembly float or sink under water. This particular implementation combines an 8-inch PMT with a 10-inch PMT and can be hung from the top hatch of a DLWCD bladder. It weighs approximately 23 kg.

Electronics Chain Options

Photosensors

Large-Area (8"-10" PMTs) □ Need good timing → Improved Angular Resolution
 MultiPMT (3"-4" PMTs) □ Effective Surface Area/€ → Greater Sensitivity
 WLS,SiPM (Category B) □ Exchange Rates?

Diameter	Model	Sensor Area (cm ²)	QE(390 nm)	Euro/cm²	Transit Time (ns)
3″	R14374	41	27.5%	14.6	1.3 ns
8″	R5912	283	25%	18.4	2.4
8″	R5912-100	283	35%	15.7	2.4
8″	R14688-100	283	35%	17.8	0.9
8″	NVT N6082	283?	28%	16.8	1.8
9″	HZC XP1805	358?	27%	~10.0	2.4
10"	R7081	379	25%	16.4	3.4
10"	R7081-100	379	35%	14.2	3.4
4″	R16293	?	?	?	proprietary
4″	N2041 (NNVT)	?	?	?	proprietary
Others from old experime nts					

(credit Felix Werner - MPIK)

PMT Test facility at MPIK

PMT Test facility in Prague

Remote Digitization with FlashCAM ADCs

- CTA-based design
- □ Modified & Developed for SWGO by MPIK Group
- "Phantom_ HV Supply & Pick-off"
- □ FlashCam mainboards with two 12-channel ADC

Figure 3: Architecture of the node-based design with encapsulated, passive-base photosensors phantompowered via a coaxial transmission lines. Signal pick-offs (bias-tees), HV supplies, digitisers, and array timing modules are housed in DAQ nodes distributed throughout the array, each serving several tens of WCDs. A node is connected to the central infrastructure merely with single-mode fibres and AC power.

Fig. 1 Photograph of a FlashCam ADC module: a FlashCam mainboard equipped with two 12-channel ADC boards.

INFN-Napoli Multi-PMT Mechanics/Electronics

- KM3Net-based design
- □ Modified & Developed for SWGO by INFN-Napoli Group
- □ Local digitization of 7 upward-facing 3" XXXX PMTs
- □ White Rabbit Timing incorporated into mainboard
- □ Linux-based mainboard to facilitate development

From the ToT we can have hint on the charge of the event

IceCube-based Optical Module with Digitizing Active Base

- IceCube-based design
- Modified & Developed for SWGO by WiPac Group
- Cockcroft Walton Active HV Base
- Local Digitization on Base
- **D** Existing Optical Modules with 16 PMTs
- **a** 8 upward, 8 downward looking
- **32-bit ARM based Mini-mainboard**

(credit Mike Duvernois – UW Madison)

wuBase — Microcontroller, ADC, FPGA Selection

Selection criteria:

Low power at 60 MSPS, readily available, low cost

Microcontroller: STM32L552CCU

- Upgrade from STM32L432 on MDOM μBase
 Use same HV generation software, easily adapted
- 256kB RAM, up to 110MHz clock (~10mW at 60MHz)
 - · Hit data formatting/compression and short-term storage (seconds)

ADC: LTC2141IUP-12 - 2 channels / 12 bits

- Original planned higher rated part LTC2142IUP, not available during pandemic
 - Yuya Makino tested performance difference carefully; LTC2141IUP shows small deviations for very fast large amplitude input swings, but excellent performance for PMT waveforms
 - Purchased sufficient stock of LTC2141IUP-12 for all Upgrade LOMs
- Power consumption ~90mW at 60MSPS including both channels better than alternatives

FPGA: Lattice iCE40UP5K-SG48

- 15kB + 128kB RAM: variable length waveform recording and buffering
- Speed/power well matched to application: 10mW at 60MSPS. Functionality above 60MSPS is limited.

Data Acquisition Requirements & Online Processing

Tab. 1 Assumptions towards estimate of data rates

Trigger data flow between array and trigger processor							
Number of WCDs	6625						
Trigger rate per WCD	pprox 75 kHz	factor 1.5 uncertainty up/down					
Total rate of WCD hits	pprox 500 MHz						
Trigger information per hit	16 bits	detector number and time; with ampl. etc. up to 32 bit					
Total data rate	≈8.0 Gb/s						
Overhead, data flow to WDC	≈ 30%						
Total data rate	\approx 10 Gb/s	extreme limit \approx 30 Gb/s					
Readout data flow between array and	processor farm						
Array trigger rate	\approx 250 kHz	set by DAQ capacity, factor 2 uncertainty up/down					
WCD hits per array trigger	≈ 100						
Number waveform samples read out	32	for small hits, could read only time and area					
Bits per waveform sample	16						
Header overhead	\approx 80 B/event						
Total data rate	pprox 1.6 GB/s	factor 2 uncertainty up/down					
Lossless on-the-fly compression	0.5	typically achieved with fast compression schemes					
Final data rate	pprox 0.8 GB/s	factor 2 uncertainty up/down					
Near real-time transfer of event inform	nation off site						
Event rate	\approx 250 kHz	factor 2 uncertainty					
Information per event	≈ 100 B	factor 2 uncertainty					
Resulting data rate	pprox 200 MB/s	order of magnitude					
(Slower) transfer of full event informat	ion off site						
Event rate	\approx 250 kHz						
Information per WCD hit	≈ 70 B						
WCD hits per array trigger	≈ 100						
Overhead, analysis info	30%						
Total data rate	2.3 GB/s						
Data compression	0.15 - 0.5	lossy / lossless compression					
Final data rate	pprox 0.3 - 1.2 GB/s	excluding uncertainty due to rate estimates etc					

- GPS-GNSS Timing Master
- Photosensor Signals Digitized Remotely or Locally
- Timing Distribution provided by White Rabbit (-like?) Switches
- CPU Server-based Online Software Processing

Fig. 2 Flow diagram for event data. Grey boxes correspond to server hardware (DAQ servers or generic computing nodes) in the computing centre; white boxes correspond to software components; arrows represent information flow.

Design constraints – Cost, Risk & Mitigation

A costing exercise for a representative site **Design Constraints** Affordability Other (credit Jim Hinton - MPIK) Levelling Durability Buildings Water Feasibility Computing Power Tanks+Bladders Access+Fence Electronics **Major Cost Drivers PMTs Tanks & Bladders** Water (site-dependent?) ??? On-site assembly Technical Environmental PMTs Managerial Political **Mitigation Examples** Resources Lightning protection, grounding Water **Establish Legal Entity Multiple Vendors & Vendor Engagement** Labor Early purchase of critical items Material (PMTs, Electronics, ...)

THE UNIVERSITY OF UTA **Department of Physics & Astronomy**

...

Risks

Design Consolidation, Future Expansion & Construction Planning

- Categorization of detector options proceeding.
- □ Focus on land-based detector option to start construction as soon as possible.
- □ Site selection to occur by end of 2024
- □ Final Detector Design Early 2025
- Detailed Site-Specific Deployment plan Mid 2025
- Planning for construction and deployment of SWGO is starting.

Element –	New Category	÷
Metal Tank	A	•
Plastic Tank	0	•
Bladder Film	A	¥
Open Ponds		•
Bladder in Lake		•
8-10" PMTs	A	•
Multi-PMT	A	•
muBase Active PMT Bases	A	•
Multi-PMT Elec.	A	•
muBase Digitiser	A	•
FC	A	•
Phantom HV	A	•
Field Node	A	•
COTS WR	A	•
WR Devices	A	•
Trig. Event and Data Flow	A	•
Lake Cage		-
Small PMT & WLS Plate	В	•
SiPM & WLS Light Traps	В	•
SiPM & Light Cones	В	•
20" PMTs	В	•
Outer WCDs	0	•
Underwater Muon Detector		-
Underwater Muon Detector Deployment		-
Hemispherical Detector Unit	0	•
WLS Fiber Enhanced PMT for WCD		
Electronics for PSD		-
Power Supply System for WCD		•
TDAQ Architecture for EM array		-

(credit Richard White – MPIK)

- Development of novel detector technologies such as the use of SiPMs and Wavelength shifting plates no longer actively pursued for use in baseline design of SWGO
- Work by Ultra High energy Task
 Force on outer array and possible large area lake deployment as a future expansion is ongoing.

Summary

The Detector Design of the Southern Wide-Field Gamma-Ray Observatory

THE UNIVERSITY OF UTAH Department of Physics & Astronomy

The SWGO Collaboration

https://www.swgo.org/SWGOWiki/doku.php?id=collaboration

- Growing Collaboration
- More than 270 collaborators on Author List
- 92 Affiliated Institutions

Institutional Member States: Argentina, Brazil, Chile, China, Croatia, Czech Republic, France, Germany, Italy, Mexico, Peru, Portugual, UK, USA

Associate Members also from Poland, Slovenia, Sweden

Backup Slides

27

Water Treatment - Requirements

Water treatment/purification

Summary table

	Haverah Park	Auger	HAWC	LHAASO WCDA	SWGO requirements	Commercial plants (e.g. Eurowater)
No. of units	60	1600	300	3	5000	
Vol. per unit	3 m³	12 m³	160 m ³	100000 + 100000 + 150000 m ³	50 m³	
Water volume	180 m³	20000 m ^s	50000 m ^s	350000 m ³	250000-300000 m ³	
Water prep.	Selected	Prefilter, soften, antiscale, chlorine reduction, 5 μ microfilter, UV 254 nm, rev. osmosis, UV 185 nm, EDI (Electrodeionization)	15 μ, 10 μ, UV 254 nm, activated carbon, 1 μ	Prefilter, activated carbon filters, 5, 3, 1, 0.1 µ microfilters, UV 254 & 185 nm	At least: prefilter, microfilters, UV 254 & 185 nm; tbd: rev. osmosis, EDI	Filter, antiscale, rev. osmosis, microfilter, EDI
Water plant capacity		70 m³/d	500 m³/d (350 l/ min)	4000 m³/d (160 t/h)	500 m³/d	~1000 m³/d (two 40' containers)
Water plant area	n.a.	Purification plant 40 m ² , Water tanks 41 m ²	70 m² + tanks	600 m²		
Water plant power consumption	n.a.	7 kW purification plant; pumps 8 + 0.8 kW	Pumps 2 × 5.5 kW	50 kW		
Water plant costs	0	tbd	tbd	n.a.	tbd	depending on specs

	Haverah Park	Auger	HAWC	LHAASO WCDA	SWGO requirements	Commercial plants (e.g. Eurowater)
Delivery time (assuming 100% plant eff.)		1 y	0.3 y	0.3 y	1.5 y?	n.a.
Efficiency or downtime		<30% downtime; incl. 15% required to regenerate softener	<20% downtime (maintenance); usually not run at full capacity	~30% downtime / maintenance		
Quality after treatment	pH 6.4	8–10 MΩ/cm	14+ m att. length	17 MΩ/cm (muon det.); 15+ m attenuation	Should probably aim for 10 MΩ/ cm	1–10 MΩ/cm
Quality deployed		>1 MΩ/cm	10 m att. length	5 MΩ/cm (muon det.)	tbd	n.a.
Total Organic Carbon (TOC)		<100 ppb			?	
Continuous water treatment	No	No	No	1 vol./15 d	No	
Long-term stability of light yield / attenuation length	Stable over 4 years	Initial ~10% drop in VEM charge-over-peak, then essentially constant	5–7 m att. length after 5 years	Significant deterioration on month- scale without recirc.	Deterioration <2–3%/year in light output	n.a.

The Detector Design of the Southern Wide-Field Gamma-Ray Observatory

Edit

Reconstruction of Energy & Arrival Direction:

Core Location, Lateral Distribution, Plane Fit

Calibration - Dedicated Calibration Hardware and/or Use of Extensive Air Shower & Muons

The Southern Wide-field Gamma-ray Observatory

30

THE UNIVERSITY OF UTAH

Physics & Astronomy

Validation - Energy Calibration using The Moon & The Crab!

Validation can be performed using known phenomena:

- □ the energy dependent deflection of cosmic rays in the known magnetic field of the earth.
- □ The known energy spectrum of the Crab Nebula

FIG. 5. Relative intensity of the Moon shadow at a mean energy of 4.3 TeV. The map has been smoothed with a top-hat function by 1° to enhance the shadow visually. A two-dimensional Gaussian was fit to the unsmoothed maps.

He 2.0 Fit + Moo [deg] ₹ 1.0 0.5 0.0 10 104 Energy [GeV] Moor MC দ্র ^{1.2}⊦ 0.8 ¥ 0.6 0.2 0.0 10 Energy [GeV]

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.122001

2017 HAWC Measurement of the energy spectrum of the Crab https://iopscience.iop.org/article/10.3847/1538-4357/aa7555/pdf

2019 HAWC Measurement of the energy spectrum of the Crab https://iopscience.iop.org/article/10.3847/1538-4357/ab2f7d

