

The novel direction detector on board of the second China **Seismo-Electromagnetic Satellite**

Innovative Detectors & Data Handling Techniques

Umberto Savino on behalf of the CSES-Limadou collaboration

CRIS-MAC13 - 17/21 June 2024 - Umberto Savino

CSES-02 scientific mission objectives

- Monitoring of the electromagnetic near-Earth space environment \bullet
- Analysis of the ionospheric and plasmaspheric fluctuations \bullet
- Measurements of iono-magnetospheric perturbations possibly due to seismo-electromagnetic phenomena
- Study of fluxes of high & low energy charged particles precipitating from the Inner Van Allen radiation belt Measurements of magnetospheric and solar activity
- \bullet
- Monitoring of the e.m. anthropic effects at low Earth orbit altitude
- Observations of e.m. transient phenomena caused by tropospheric activity

CSES-02 planned orbit

-82.6° to +82.6° latitude 500 km altitude Sun-synchronous 180° phase difference wrt CSES-01 Operating temperature: -30 to +50°C Operating pressure: 6.65.10-3 Pa

CSES-02 main characteristics

Orbit maneuver capability Full-time operational Mass: 900 kg Power: 900 W Storage: 512 Gbyte Life cycle: > 6 years

CSES-02 payload

The High Energy Particle Detector on board of CSES-02

First detector hosting monolithic active pixel sensors (MAPS) for the tracking of charge particles in space

HEPD-02 main requirements

Data budget 100 Gb/day Mass budget 50 kg Power budget 45 W Electron kinetic energy range 3 MeV ÷ 100 MeV 30 MeV ÷ 200 MeV Proton kinetic energy range $\leq 10^{\circ}$ for e⁻ with E > 3 MeV Angular resolution Energy resolution $\leq 10\%$ for e⁻ with E > 5 MeV Pointing Zenith

Scientific goals and main features

 > measure the increase of the electron and proton fluxed due to short-time perturbations of the radiation belts
 > detect different particle populations (solar, trapped, galactic, etc.) according to the satellite position and energy
 > implements trigger configuration dedicated to gamma rays on a time basis of 5 milliseconds

https://cses.web.roma2.infn.it/?page_id=198

_id=198

-700

High Energy Particle Detector (HEPD-02)

- front trigger plane (200×180 mm²) 5 plastic scintillator bars (2 mm thick)
- direction detector (tracker) five standalone tracking modules
- rear trigger plane $(150 \times 150 \text{ mm})$ 4 plastic scintillator bars (8 mm thick)
- range detector $(150 \times 150 \times 10 \text{ mm})$ 12 plastic scintillator planes
- energy detector $(150 \times 150 \text{ mm}_2)$ 2 crystal (LYSO) scintillator planes 3 x 2 bars (25 mm thick each)
- containment detector plastic scintillator planes (8 mm thick) 4 lateral and 1 bottom plane

containment detector

Direction detector

Modules composing the tracker

5 tracking units top layer

TCP power & data transfer

> **Qualification model** (QM) **Flight model** (FM)

5 turrets for QM 5 turrets for FM + spare turrets

Direction detector

Modules composing the tracker

Turret

Stave

Cold plate mechanical support

Mechanical support

- Thermo-mechanical design for ALPIDE pixel sensor chip in a high-energy particle detector space module DOI: https://doi.org/10.1088/1748-0221/17/01/C01019
- Thermo/mechanical design for embedding ALPIDE pixel sensor chip in a High-Energy Particle Detector space module DOI: 10.1088/1742-6596/2374/1/012049
- Experimental investigation of new ultra-lightweight support and cooling structures for the new Inner Tracking System of the ALICE Detector DOI: 10.1088/1748-0221/13/08/T08003

TARGET: stiffness and thermal drain

Cooling is granted by material thermal conductivity support has to be **stiff** enough to resist to 10G the material budget has to be minimized

Material budget of STAVEs

DD realization

Modules composing the tracker

Hybrid integrated circuit

ALTAI alignment with CMM

wire bond through the FPC

Monolithic active pixel sensors

ALTAI sensors - CMOS 180nm technology from Tower Jazz

Parameter Valu	les
Detector size [mm ²] 15 x	30low matecharge a
Columns x rows 1024	• light outp
Pixel size [µm x µm] 26.9	x 29.2 • cheaper
Detector thickness [µm] 50	 digital re
Spatial resolution [µm] 5	
Detection efficiency >99%	NWELL DIODE
Fake hit rate [evt ⁻¹ pixel ⁻¹] <10 ⁻⁷	7 DEEP PWELL
Integration time [µs] ~2	
Power density [mW/cm ²] <50	Epitaxial Layer P- Substrate P++

Courtesy of Miljenko S[°]ulji c

- and readout circuitry are implanted in the same silicon
- erial budget
- collection by diffusion (bigger clusters \rightarrow better spatial resolution)
- put (zero suppression)
- r that micro strips
- eadout (limited charge information)

Power consumption mitigation

- serial slow-control line.
- - electronics;
 - trigger

TARGET: power budget ~13 W

• ALICE ITS OB Master-slave architecture (1 master out of 5 chips) with sequential slave read-out through master.

Permanent switch-off of fast data transmission unit (DTU) and read-out through

• Acceptable increase of dead time, given the relatively low trigger rate sustainable by the HEPD-02 system (up to few kHz).

• **Clock gating:** ALTAI clock normally off, set on with trigger: • trigger: clock on (17 mW/cm²); • wait for signal digitization; 157 mW transmit data to control/read-out 152 mW 🔳 Local Bu 140.0 🔳 Digital Analog clock off (7 mW/cm²): wait for new 71 mW 60.0 40.0 20.0 0.0 Inner Barrel Mode Master Chip Mode Slave Chip Mode

Statistics from the production

- CMM to perform the ALTAI alignment
- 3 stages of functional test

 (2 on HICs and 1 con STAVEs) + test on
 turrets and traders

Total production:

- 68 bonded HICs
- 41 STAVES

Test procedure to assess stave quality:

- check for hotspot with thermal camera
- chip scan \rightarrow read/write procedure returning chip ID
- digital scan \rightarrow readout digital check
- threshold scan \rightarrow charge injection

Threshold tuning:

scan of chip biases to tune the threshold level

Production yeld

Quality TAG *	HIC assembly + bonding	HIC post Tab/Wings cut	Stave Assembly
GOLD	40%	44%	56%
SILVER	15%	15%	5%
BRONZE	12%	23%	10%
NOT OK	34%	19%	29%
Total:	68	48	41

* quality categories based on functional performance

Heat dissipation

Space condition

- Vacuum environment of 6.65 10⁻³ Pa
- Repeated thermal cycles from -30 °C to +50 °C
- Cooling system on one side
- Temperature gradient of 6 °C

Validation setup

- Climatic chamber
- Dallas sensors (DS18B20U) on board of FPC
- temperature variation from -10 °C to +50 °C

Result

- Threshold variation of 1 e^{-1} C in the characterization range
- Standard deviation of every-chip pixel threshold higher than threshold residuals

TARGET: thermal drain (0.8 W/STAVE)

ion range nigher than

Test beam campaign

20

0

40

60

80

x [mm]

100 120 140 160

Beam (particles/photons) energies

	energy rang
electrons	6 450 MeV
protons	10 230 Me`
carbon	115 400 Me
photons	1 10 MeV

 Ψ is the angular difference between the

up to 60 times the e-h pairs of a m.i.p.

reconstructed track and the true direction.

In compliance with CSES-02 satellite requirements

Vibrational test

- resonance search scan along the axis
- apply Sine and Random vibration load levels
- visual inspection and verification of the insulation resistance
- Shock test (only QM)

Thermo vacuum test

- temperature cycles from -30 to +50 °C
- pressure to nominal value $\leq 6.65 \times 10^{-3}$ Pa
- QM: 25.5 Thermal cycles, 6.5 Thermal Vacuum
- FM: 14.5 Thermal cycles, 3.5 Thermal Vacuum
- anomaly monitoring and performance test

Test result: passed

Project	ion on Y	
Fit: sig	ma = 2.50 :	± 0.01
		2
5000	10000	
Cour	nts	
		14

HEPD-02 integration in CSES-02

Cosmic rays data acquisition before integration in CSES-02 statistics: about 117,000 events

Cosmic rays data acquisition after integration in CSES-02 after vibrational tests statistics: about 7,000 events

Conclusions

- HEPD-02 DD will be the first ever use of MAPS in a space application
- Two HEPD-02 payloads produced and qualified (QM and FM)
- Space compliance tests successfully performed on HEPD-02 payload
- Analysis on test beam data currently under publication
- HEPD-02 integrated on board of CSES-02 \rightarrow satellite acceptance campaign ongoing
- Launch scheduled in December 12, 2024

Thank you for your attention

SPARE SLIDES

1st requirement: precision

HIC assembly under CMM required to guarantee alignment precision for wire bondings

Space requirement:

• redundancy \rightarrow 3 bonds per each pad

• Mitutoyo CMM measure the position of the ALTAI reference pads CMM resolution: $x = 7 \mu m$ | $y = 7 \mu m$ | $z = 20 \mu m$

Resuduals wrt nominal positions						
	mean [µm]	rms [µm]				
Δx	1.9	11.7				
Δy	0.2	12.4				
Δz	-8,477	57				

 $\Delta \mathbf{x} \Delta \mathbf{y}$ Distribution

2nd requirement - power consumption

Test procedure to assess stave quality:

- check for hotspot with thermocam
- chip scan \rightarrow read/write procedure returning chip ID
- digital scan \rightarrow readout digital check
- threshold scan \rightarrow charge injection

Threshold tuning:

scan of chip biases to tune the threshold level

Staves power consumption

AVDD [mA] DVDD [mA]

BRONZE	SILVER	GOLD	GOLD spare
124 ± 1	124 ± 2	125 ± 5	112 ± 2
466 ± 6	460 ± 21	451 ± 11	421 ± 10

Wire bonding and gluing

Numbers:

• 74 pads/chip x 3 bonds/pad x 10 chips/STAVE \rightarrow 2220 bonds/STAVE

Materials:

- ENEPIG (electroless nickel electroless palladium immersion gold) for FPC bonding pads
- bonding wire in Al
- ARALDITE 2011 bi-component epoxy glue

Challenge:

 managing the uniformity of the glue and the planarity of chip-FPC to have automatic bonding

Space compliance

 space-compliance of materials and solutions of assembly (bonding, gluing, grounding) was validated during summer 2019, with 6.5 thermal cycles in the temperature range -30°/+50°C, imposed to the engineering model of a stave

(00)	2105.1	1842.	12 1842	.12	\sim									1842	2.12 1842	12 210	5.16
(0, 150	11	•00 <u>H</u>	•8	F01	• <u>5</u>	F02	602	F03	603	€ €	604 G04	€ F05	605 G05	• F06	e G06	€ F07	
		00 E00	•5	2 E01	33	04 E02	55	06 E03	12	98 E04	60	0 E05	•=	2 E06		4 E07	
		D 00 00	Cot Do	C02 D0	00 003	C04	C05 DC	C06	C07 D0	C08	00 00	C10 D1	Ci1 Di	c12 D1	C13 D1	C14 D1	
		V															
		_	01	~ +			~	•		- -		0, 00	+ "		N M		
(0.	B00	A05 400 400 400 400 400 400 400 400 400 4	A12 A14 A14 A15 • B02	• B03	BOF BOF	B07	B08	B00	A447 A447 A443 A550 A550 A550 A551	• B10		• B13	• B14		• B17	*** • B19	B2(

Pull test **Electrical test**

Pull test results

sample	25 HICs
force mean	11.9 g
force std	1.9 g
liftoff	226

Carbon fibers

- **Support:** C-shaped carbon fiber cold plate 400 µm thick with lateral ribs + aluminum end blocks \bullet
 - Simulated (Finite Element Model) optimal lay-up configuration \rightarrow oriented plies of unidirectional carbon fiber K13D2U \bullet with cyanate ester prepress resin EX1515
- **Cooling based on conductivity of material** standing between chips and the thermal plate
- Global thermal conductivity of CP: \bullet
 - longitudinal 343-367 W/m K \bullet
 - transversal 173-180 W/m K \bullet

- Thermo-mechanical design for ALPIDE pixel sensor chip in a high-energy particle detector space mo S. Coli et al., 2021, 22nd International Workshop on Radiation Imaging Detectors DOI: https://doi.org/10.1088/1748-0221/17/01/C01019
- Thermo/mechanical design for embedding ALPIDE pixel sensor chip in a High-Energy Particle Detected E. Serra et al., 2022, Journal of Physics Conference Series, 2374, 012049, IOP Publishing DOI: 10.1088/1742-6596/2374/1/012049
- Experimental investigation of new ultra-lightweight support and cooling structures for the new Inner the ALICE Detector V.I. Zherebchevsky et al 2018 JINST 13 T08003 DOI: 10.1088/1748-0221/13/08/T08003

Vibrational tests on the turret assembly to comply with standards EN ISO:9100 for Aerospace, Space, and Defence.

i i i i i i i i i i i i i i i i i i i	Material budget	of STAVEs		
	STAVE element	material	thick [µm]	rad.lengt [%]
	FPC board	capton	135	0.048
odule	FPC tracks	Cu	36	0.251
	glue	ARALDITE 2011	130	0.029
for space module	ALTAI	Si	50	0.053
r Tracking System of	cold plate	Carbon fiber + epoxy resin	350	0.134
	Total:			0.515

Control and readout electronics

- Fully customized for HEPD-02 space application.
 - Compactness: tracker control and read-out in a single board (T-DAQ).
 - Design driven by power consumption limits (3 W budget for T-DAQ).
 - Hot/cold **redundancy** to increase overall reliability during flight.
- Control logics and Microblaze soft processor implemented on Xilinx Artix 7 FPGA.
- 15 CTRL logic modules (one per stave) handle the full ALTAI housekeeping and data acquisition through serial bidirectional line.
 - Tracker segmentation (and superposition of an independent trigger bar to each turret in HEPD-02 layout) allow to read-out a subset of the 5 turrets (or 2 planes only), if required to reduce power or dead time.
- The soft processor implements calibration and service procedures (switched-off most of time to save power).
 - Threshold calibration procedure identifies and excludes dead/noisy pixels.

a single board (T-DAQ). V budget for T-DAQ). ility during flight.

