Constraints on UHECR sources and extragalactic magnetic fields

from directional anisotropies

Teresa Bister & Glennys Farrar based on ApJ 966 1 (2024)

Ultra-high-energy cosmic ray data

- amplitude ~ 7%, rising with the energy
- no significant quadrupole or higher moments!
- phase shifts from Galactic center to anticenter

→ sources extragalactic!

UHECR flux from Large Scale Structure

extragalactic matter density

dipole can be explained by extragalactic sources following the large-scale structure of the universe

+ deflection by Galactic magnetic field

[Ding, Globus, Farrar ApJ 2022]

Fit principle

injection following LSS all sources following Peters cycle

propagation with CRPropa → gives illumination

Galactic magnetic field deflections: JF12

5 kpc

Teresa Bister | 18.06.2023 | slide 4

adapt injection, via likelihood:

- compare model to data from Pierre Auger Observatory
 - dipole components in 3 E bins
 - energy spectrum
 - mass composition (shower depth distributions)

on Earth: calculate energies, charges + directions of incoming CRs

21.0

Radboud University

 $J_{,>8} \stackrel{1.0}{\text{EeV}}$, TH=45°

0.6

Measurements at Earth (after Galactic magnetic field)

Measurements at Earth (after Galactic magnetic field)

LSS model can describe spectrum, composition and arrival directions. What else can we learn...?

Bias between matter density and UHECR sources

Is there a bias between the UHECR source distribution and the (dark) matter distribution / LSS?

 \rightarrow simple test: cut away densest / least dense regions of LSS

Teresa Bister | 18.06.2023 | slide 7

Radboud University

Bias between matter density and UHECR sources

Extragalactic magnetic field effect?

extragalactic magnetic field "smears out" arrival directions

"How many of 1000 random simulations have a large enough dipole and small enough higher multipole moments?"

"How many of 1000 random simulations have a large enough dipole and small enough higher multipole moments?"

- → rare sources (e.g. starbursts) \leftrightarrow strong EGMF
 - → max. 3 nG Mpc^{1/2}
- negligible EGMF ↔ sources must be common, (e.g. Milky-Way-like galaxies)
 - or: frequent in case of transients like BH-NS mergers, tidal disruption events

Homogeneous source distribution?

- homogeneous distribution less likely, only for rare sources and considerable EGMF
- dipole direction not predictable

Conclusions

- sources of UHECRs most likely follow LSS
 - can describe dipole and absence of higher multipoles
 - LSS bias-free estimator for UHECR source distribution
- placed combined constraints on extragalactic magnetic field & source number density
 - if EGMF negligible: sources common with n>10^{-3.5} Mpc⁻³ \rightarrow blazars, SBGs etc too sparse
- caution: results dependent on model for the Galactic magnetic field
 - analysis will soon be updated with new GMF models [Unger & Farrar 2024]

Teresa Bister | 18.06.2023 | slide 16

Backup

Dipole direction predictions

UHECR flux from Large Scale Structure

