13th Cosmic-Ray International Studies and Multi-messenger Astroparticle Conference Contribution ID: 3 Type: Oral ## Strange hadron production in high-multiplicity hadronic collisions with cosmic ray monte carlo simulations for atmospheric air showers and beyond: simulation study In this paper, we conduct a Monte Carlo simulation study to investigate the production of strange and multistrange hadrons in high-multiplicity proton-proton collisions. Our objective is to refine and validate the hadronic interaction models crucial for air shower simulations such as EPOS, QGSJET, SIBYLL, and PYTHIA. These models play a pivotal role in predicting the propagation of extensive air showers in the atmosphere and comparing them with experimental data from cosmic ray observatories such as high-multiplicity protonproton collisions in the ALICE experiment. In the case of (K0S) mesons, at low multiplicity classes, we found that EPOS and PYTHIA can show a better prediction of the data than QGSJET and SIBYLL, while QGSJET exhibits favourable predictions at higher multiplicity classes. On the other hand, when looking at (Λ) baryons, the EPOS model is the only model that shows the best comparison to data. In addition, We employ the Tsallis distribution to extract the effective temperature (Teff) and the non-extensivity parameter (q). Primary author: HAJ ISMAIL, Abd Al Karim Presenter: HAJ ISMAIL, Abd Al Karim Session Classification: Ultra-High Energy Cosmic Rays Track Classification: Ultra-High Energy Cosmic Rays